设计具有图灵和波不稳定性的反应-交叉扩散系统

Edgardo Villar-Sepúlveda, Alan R. Champneys, Andrew L. Krause
{"title":"设计具有图灵和波不稳定性的反应-交叉扩散系统","authors":"Edgardo Villar-Sepúlveda, Alan R. Champneys, Andrew L. Krause","doi":"arxiv-2409.06860","DOIUrl":null,"url":null,"abstract":"General conditions are established under which reaction-cross-diffusion\nsystems can undergo spatiotemporal pattern-forming instabilities. Recent work\nhas focused on designing systems theoretically and experimentally to exhibit\npatterns with specific features, but the case of non-diagonal diffusion\nmatrices has yet to be analysed. Here, a framework is presented for the design\nof general $n$-component reaction-cross-diffusion systems that exhibit Turing\nand wave instabilities of a given wavelength. For a fixed set of reaction\nkinetics, it is shown how to choose diffusion matrices that produce each\ninstability; conversely, for a given diffusion tensor, how to choose linearised\nkinetics. The theory is applied to several examples including a hyperbolic\nreaction-diffusion system, two different 3-component models, and a\nspatio-temporal version of the Ross-Macdonald model for the spread of malaria.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing reaction-cross-diffusion systems with Turing and wave instabilities\",\"authors\":\"Edgardo Villar-Sepúlveda, Alan R. Champneys, Andrew L. Krause\",\"doi\":\"arxiv-2409.06860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General conditions are established under which reaction-cross-diffusion\\nsystems can undergo spatiotemporal pattern-forming instabilities. Recent work\\nhas focused on designing systems theoretically and experimentally to exhibit\\npatterns with specific features, but the case of non-diagonal diffusion\\nmatrices has yet to be analysed. Here, a framework is presented for the design\\nof general $n$-component reaction-cross-diffusion systems that exhibit Turing\\nand wave instabilities of a given wavelength. For a fixed set of reaction\\nkinetics, it is shown how to choose diffusion matrices that produce each\\ninstability; conversely, for a given diffusion tensor, how to choose linearised\\nkinetics. The theory is applied to several examples including a hyperbolic\\nreaction-diffusion system, two different 3-component models, and a\\nspatio-temporal version of the Ross-Macdonald model for the spread of malaria.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立了反应-交叉扩散系统发生时空模式形成不稳定性的一般条件。最近的研究集中于从理论和实验上设计具有特定特征的系统,但非对角扩散矩阵的情况尚未得到分析。本文提出了一个框架,用于设计表现出给定波长的图灵和波不稳定性的一般 $n$ 分量反应交叉扩散系统。对于一组固定的反应动力学,说明了如何选择能产生每种不稳定性的扩散矩阵;反之,对于给定的扩散张量,说明了如何选择线性化动力学。该理论被应用于几个例子,包括双曲反应-扩散系统、两种不同的 3 分量模型,以及疟疾传播的罗斯-麦克唐纳模型的时相版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing reaction-cross-diffusion systems with Turing and wave instabilities
General conditions are established under which reaction-cross-diffusion systems can undergo spatiotemporal pattern-forming instabilities. Recent work has focused on designing systems theoretically and experimentally to exhibit patterns with specific features, but the case of non-diagonal diffusion matrices has yet to be analysed. Here, a framework is presented for the design of general $n$-component reaction-cross-diffusion systems that exhibit Turing and wave instabilities of a given wavelength. For a fixed set of reaction kinetics, it is shown how to choose diffusion matrices that produce each instability; conversely, for a given diffusion tensor, how to choose linearised kinetics. The theory is applied to several examples including a hyperbolic reaction-diffusion system, two different 3-component models, and a spatio-temporal version of the Ross-Macdonald model for the spread of malaria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信