随机场中的孤子动力学:本杰明-奥诺方程框架

Marcelo V. Flamarion, Efim Pelinovsky, Ekaterina Didenkulova
{"title":"随机场中的孤子动力学:本杰明-奥诺方程框架","authors":"Marcelo V. Flamarion, Efim Pelinovsky, Ekaterina Didenkulova","doi":"arxiv-2409.03790","DOIUrl":null,"url":null,"abstract":"Algebraic soliton interactions with a periodic or quasi-periodic random force\nare investigated using the Benjamin-Ono equation. The random force is modeled\nas a Fourier series with a finite number of modes and random phases uniformly\ndistributed, while its frequency spectrum has a Gaussian shape centered at a\npeak frequency. The expected value of the averaged soliton wave field is\ncomputed asymptotically and compared with numerical results, showing strong\nagreement. We identify parameter regimes where the averaged soliton field\nsplits into two steady pulses and a regime where the soliton field splits into\ntwo solitons traveling in opposite directions. In the latter case, the averaged\nsoliton speeds are variable. In both scenarios, the soliton field is damped by\nthe external force. Additionally, we identify a regime where the averaged\nsoliton exhibits the following behavior: it splits into two distinct solitons\nand then recombines to form a single soliton. This motion is periodic over\ntime.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soliton dynamics in random fields: The Benjamin-Ono equation framework\",\"authors\":\"Marcelo V. Flamarion, Efim Pelinovsky, Ekaterina Didenkulova\",\"doi\":\"arxiv-2409.03790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algebraic soliton interactions with a periodic or quasi-periodic random force\\nare investigated using the Benjamin-Ono equation. The random force is modeled\\nas a Fourier series with a finite number of modes and random phases uniformly\\ndistributed, while its frequency spectrum has a Gaussian shape centered at a\\npeak frequency. The expected value of the averaged soliton wave field is\\ncomputed asymptotically and compared with numerical results, showing strong\\nagreement. We identify parameter regimes where the averaged soliton field\\nsplits into two steady pulses and a regime where the soliton field splits into\\ntwo solitons traveling in opposite directions. In the latter case, the averaged\\nsoliton speeds are variable. In both scenarios, the soliton field is damped by\\nthe external force. Additionally, we identify a regime where the averaged\\nsoliton exhibits the following behavior: it splits into two distinct solitons\\nand then recombines to form a single soliton. This motion is periodic over\\ntime.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用本杰明-奥诺方程研究了代数孤子与周期性或准周期性随机力的相互作用。随机力被建模为具有有限模数和均匀分布的随机相位的傅里叶级数,而其频谱具有以峰值频率为中心的高斯形状。对平均孤子波场的期望值进行了渐近计算,并与数值结果进行了比较,结果表明两者非常吻合。我们确定了平均孤子波场分裂为两个稳定脉冲的参数区,以及孤子波场分裂为两个方向相反的孤子的参数区。在后一种情况下,平均孤子速度是可变的。在这两种情况下,孤子场都受到外力的阻尼。此外,我们还确定了一种平均孤子表现出以下行为的机制:它分裂成两个不同的孤子,然后重新组合形成一个孤子。这种运动是周期性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soliton dynamics in random fields: The Benjamin-Ono equation framework
Algebraic soliton interactions with a periodic or quasi-periodic random force are investigated using the Benjamin-Ono equation. The random force is modeled as a Fourier series with a finite number of modes and random phases uniformly distributed, while its frequency spectrum has a Gaussian shape centered at a peak frequency. The expected value of the averaged soliton wave field is computed asymptotically and compared with numerical results, showing strong agreement. We identify parameter regimes where the averaged soliton field splits into two steady pulses and a regime where the soliton field splits into two solitons traveling in opposite directions. In the latter case, the averaged soliton speeds are variable. In both scenarios, the soliton field is damped by the external force. Additionally, we identify a regime where the averaged soliton exhibits the following behavior: it splits into two distinct solitons and then recombines to form a single soliton. This motion is periodic over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信