评估大型语言模型风险的对话复杂性

John Burden, Manuel Cebrian, Jose Hernandez-Orallo
{"title":"评估大型语言模型风险的对话复杂性","authors":"John Burden, Manuel Cebrian, Jose Hernandez-Orallo","doi":"arxiv-2409.01247","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) present a dual-use dilemma: they enable\nbeneficial applications while harboring potential for harm, particularly\nthrough conversational interactions. Despite various safeguards, advanced LLMs\nremain vulnerable. A watershed case was Kevin Roose's notable conversation with\nBing, which elicited harmful outputs after extended interaction. This contrasts\nwith simpler early jailbreaks that produced similar content more easily,\nraising the question: How much conversational effort is needed to elicit\nharmful information from LLMs? We propose two measures: Conversational Length\n(CL), which quantifies the conversation length used to obtain a specific\nresponse, and Conversational Complexity (CC), defined as the Kolmogorov\ncomplexity of the user's instruction sequence leading to the response. To\naddress the incomputability of Kolmogorov complexity, we approximate CC using a\nreference LLM to estimate the compressibility of user instructions. Applying\nthis approach to a large red-teaming dataset, we perform a quantitative\nanalysis examining the statistical distribution of harmful and harmless\nconversational lengths and complexities. Our empirical findings suggest that\nthis distributional analysis and the minimisation of CC serve as valuable tools\nfor understanding AI safety, offering insights into the accessibility of\nharmful information. This work establishes a foundation for a new perspective\non LLM safety, centered around the algorithmic complexity of pathways to harm.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"287 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conversational Complexity for Assessing Risk in Large Language Models\",\"authors\":\"John Burden, Manuel Cebrian, Jose Hernandez-Orallo\",\"doi\":\"arxiv-2409.01247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Language Models (LLMs) present a dual-use dilemma: they enable\\nbeneficial applications while harboring potential for harm, particularly\\nthrough conversational interactions. Despite various safeguards, advanced LLMs\\nremain vulnerable. A watershed case was Kevin Roose's notable conversation with\\nBing, which elicited harmful outputs after extended interaction. This contrasts\\nwith simpler early jailbreaks that produced similar content more easily,\\nraising the question: How much conversational effort is needed to elicit\\nharmful information from LLMs? We propose two measures: Conversational Length\\n(CL), which quantifies the conversation length used to obtain a specific\\nresponse, and Conversational Complexity (CC), defined as the Kolmogorov\\ncomplexity of the user's instruction sequence leading to the response. To\\naddress the incomputability of Kolmogorov complexity, we approximate CC using a\\nreference LLM to estimate the compressibility of user instructions. Applying\\nthis approach to a large red-teaming dataset, we perform a quantitative\\nanalysis examining the statistical distribution of harmful and harmless\\nconversational lengths and complexities. Our empirical findings suggest that\\nthis distributional analysis and the minimisation of CC serve as valuable tools\\nfor understanding AI safety, offering insights into the accessibility of\\nharmful information. This work establishes a foundation for a new perspective\\non LLM safety, centered around the algorithmic complexity of pathways to harm.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"287 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLMs)面临着双重用途的困境:它们在实现有益应用的同时,也隐藏着潜在的危害,尤其是通过会话交互造成的危害。尽管有各种保障措施,但先进的大型语言模型仍然很脆弱。一个具有分水岭意义的案例是凯文-罗斯(Kevin Roose)与Bing的著名对话,该对话在长时间互动后产生了有害输出。这与早期更容易产生类似内容的简单越狱形成了鲜明对比,从而提出了一个问题:从 LLMs 中获取有害信息需要多大的对话努力?我们提出了两种测量方法:对话长度(CL)量化了用于获取特定响应的对话长度,而对话复杂度(CC)则定义为用户指令序列导致响应的柯尔莫哥洛夫复杂度。为了解决柯尔莫哥洛夫复杂度无法计算的问题,我们使用推理 LLM 来估计用户指令的可压缩性,从而近似计算 CC。我们将这种方法应用于一个大型红队数据集,对有害和无害对话长度和复杂度的统计分布进行了定量分析。我们的实证研究结果表明,这种分布分析和 CC 的最小化是了解人工智能安全性的重要工具,可以帮助我们深入了解有害信息的可及性。这项工作为从新的角度看待 LLM 安全性奠定了基础,其核心是通往伤害的算法复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conversational Complexity for Assessing Risk in Large Language Models
Large Language Models (LLMs) present a dual-use dilemma: they enable beneficial applications while harboring potential for harm, particularly through conversational interactions. Despite various safeguards, advanced LLMs remain vulnerable. A watershed case was Kevin Roose's notable conversation with Bing, which elicited harmful outputs after extended interaction. This contrasts with simpler early jailbreaks that produced similar content more easily, raising the question: How much conversational effort is needed to elicit harmful information from LLMs? We propose two measures: Conversational Length (CL), which quantifies the conversation length used to obtain a specific response, and Conversational Complexity (CC), defined as the Kolmogorov complexity of the user's instruction sequence leading to the response. To address the incomputability of Kolmogorov complexity, we approximate CC using a reference LLM to estimate the compressibility of user instructions. Applying this approach to a large red-teaming dataset, we perform a quantitative analysis examining the statistical distribution of harmful and harmless conversational lengths and complexities. Our empirical findings suggest that this distributional analysis and the minimisation of CC serve as valuable tools for understanding AI safety, offering insights into the accessibility of harmful information. This work establishes a foundation for a new perspective on LLM safety, centered around the algorithmic complexity of pathways to harm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信