具有运行长度限制的分组测试高效算法

Marco Dalai, Stefano Della Fiore, Adele A. Rescigno, Ugo Vaccaro
{"title":"具有运行长度限制的分组测试高效算法","authors":"Marco Dalai, Stefano Della Fiore, Adele A. Rescigno, Ugo Vaccaro","doi":"arxiv-2409.03491","DOIUrl":null,"url":null,"abstract":"In this paper, we provide an efficient algorithm to construct almost optimal\n$(k,n,d)$-superimposed codes with runlength constraints. A\n$(k,n,d)$-superimposed code of length $t$ is a $t \\times n$ binary matrix such\nthat any two 1's in each column are separated by a run of at least $d$ 0's, and\nsuch that for any column $\\mathbf{c}$ and any other $k-1$ columns, there exists\na row where $\\mathbf{c}$ has $1$ and all the remaining $k-1$ columns have $0$.\nThese combinatorial structures were introduced by Agarwal et al. [1], in the\ncontext of Non-Adaptive Group Testing algorithms with runlength constraints. By using Moser and Tardos' constructive version of the Lov\\'asz Local Lemma,\nwe provide an efficient randomized Las Vegas algorithm of complexity $\\Theta(t\nn^2)$ for the construction of $(k,n,d)$-superimposed codes of length\n$t=O(dk\\log n +k^2\\log n)$. We also show that the length of our codes is\nshorter, for $n$ sufficiently large, than that of the codes whose existence was\nproved in [1].","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Algorithm for Group Testing with Runlength Constraints\",\"authors\":\"Marco Dalai, Stefano Della Fiore, Adele A. Rescigno, Ugo Vaccaro\",\"doi\":\"arxiv-2409.03491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide an efficient algorithm to construct almost optimal\\n$(k,n,d)$-superimposed codes with runlength constraints. A\\n$(k,n,d)$-superimposed code of length $t$ is a $t \\\\times n$ binary matrix such\\nthat any two 1's in each column are separated by a run of at least $d$ 0's, and\\nsuch that for any column $\\\\mathbf{c}$ and any other $k-1$ columns, there exists\\na row where $\\\\mathbf{c}$ has $1$ and all the remaining $k-1$ columns have $0$.\\nThese combinatorial structures were introduced by Agarwal et al. [1], in the\\ncontext of Non-Adaptive Group Testing algorithms with runlength constraints. By using Moser and Tardos' constructive version of the Lov\\\\'asz Local Lemma,\\nwe provide an efficient randomized Las Vegas algorithm of complexity $\\\\Theta(t\\nn^2)$ for the construction of $(k,n,d)$-superimposed codes of length\\n$t=O(dk\\\\log n +k^2\\\\log n)$. We also show that the length of our codes is\\nshorter, for $n$ sufficiently large, than that of the codes whose existence was\\nproved in [1].\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提供了一种高效算法,用于构建几乎最优的具有运行长度限制的$(k,n,d)$叠加码。长度为 $t$ 的$(k,n,d)$叠加代码是一个 $t \times n$ 的二进制矩阵,使得每列中的任意两个 1 之间都至少有 $d$ 的 0 隔开,并且对于任意一列 $\mathbf{c}$ 和任意其他 $k-1$ 列,都存在一行 $\mathbf{c}$ 为 1$,其余所有 $k-1$ 列均为 0$。这些组合结构是 Agarwal 等人[1]在有运行长度限制的非自适应分组测试算法中引入的。通过使用 Moser 和 Tardos 的 Lov\'asz Local Lemma 的构造版本,我们提供了一种复杂度为 $\Theta(tn^2)$ 的高效随机拉斯维加斯算法,用于构建长度为 $t=O(dk\log n +k^2\log n)$ 的 $(k,n,d)$ 叠加码。我们还证明,在 $n$ 足够大的情况下,我们的编码长度比 [1] 中证明其存在的编码长度更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Algorithm for Group Testing with Runlength Constraints
In this paper, we provide an efficient algorithm to construct almost optimal $(k,n,d)$-superimposed codes with runlength constraints. A $(k,n,d)$-superimposed code of length $t$ is a $t \times n$ binary matrix such that any two 1's in each column are separated by a run of at least $d$ 0's, and such that for any column $\mathbf{c}$ and any other $k-1$ columns, there exists a row where $\mathbf{c}$ has $1$ and all the remaining $k-1$ columns have $0$. These combinatorial structures were introduced by Agarwal et al. [1], in the context of Non-Adaptive Group Testing algorithms with runlength constraints. By using Moser and Tardos' constructive version of the Lov\'asz Local Lemma, we provide an efficient randomized Las Vegas algorithm of complexity $\Theta(t n^2)$ for the construction of $(k,n,d)$-superimposed codes of length $t=O(dk\log n +k^2\log n)$. We also show that the length of our codes is shorter, for $n$ sufficiently large, than that of the codes whose existence was proved in [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信