熵和固定极性信息量的代数表示法

Keenan J. A. Down, Pedro A. M. Mediano
{"title":"熵和固定极性信息量的代数表示法","authors":"Keenan J. A. Down, Pedro A. M. Mediano","doi":"arxiv-2409.04845","DOIUrl":null,"url":null,"abstract":"Many information-theoretic quantities have corresponding representations in\nterms of sets. The prevailing signed measure space for characterising entropy,\nthe $I$-measure of Yeung, is occasionally unable to discern between\nqualitatively distinct systems. In previous work, we presented a refinement of\nthis signed measure space and demonstrated its capability to represent many\nquantities, which we called logarithmically decomposable quantities. In the\npresent work we demonstrate that this framework has natural algebraic behaviour\nwhich can be expressed in terms of ideals (characterised here as upper-sets),\nand we show that this behaviour allows us to make various counting arguments\nand characterise many fixed-parity information quantity expressions. As an\napplication, we give an algebraic proof that the only completely synergistic\nsystem of three finite variables $X$, $Y$ and $Z = f(X,Y)$ is the XOR gate.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic Representations of Entropy and Fixed-Parity Information Quantities\",\"authors\":\"Keenan J. A. Down, Pedro A. M. Mediano\",\"doi\":\"arxiv-2409.04845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many information-theoretic quantities have corresponding representations in\\nterms of sets. The prevailing signed measure space for characterising entropy,\\nthe $I$-measure of Yeung, is occasionally unable to discern between\\nqualitatively distinct systems. In previous work, we presented a refinement of\\nthis signed measure space and demonstrated its capability to represent many\\nquantities, which we called logarithmically decomposable quantities. In the\\npresent work we demonstrate that this framework has natural algebraic behaviour\\nwhich can be expressed in terms of ideals (characterised here as upper-sets),\\nand we show that this behaviour allows us to make various counting arguments\\nand characterise many fixed-parity information quantity expressions. As an\\napplication, we give an algebraic proof that the only completely synergistic\\nsystem of three finite variables $X$, $Y$ and $Z = f(X,Y)$ is the XOR gate.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多信息论量都有相应的集合表示。用于表征熵的常用有符号度量空间,即 Yeung 的 $I$ 度量,有时无法区分定性不同的系统。在以前的工作中,我们提出了对这种有符号度量空间的改进,并证明了它能够表示许多量,我们称之为对数可分解量。在目前的工作中,我们证明了这一框架具有自然代数行为,可以用理想(这里表征为上集)来表示,我们还证明了这种行为允许我们进行各种计数论证,并表征许多固定奇偶信息量表达式。作为应用,我们给出了一个代数证明:由三个有限变量 $X$、$Y$ 和 $Z = f(X,Y)$ 构成的唯一完全协同系统就是 XOR 门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic Representations of Entropy and Fixed-Parity Information Quantities
Many information-theoretic quantities have corresponding representations in terms of sets. The prevailing signed measure space for characterising entropy, the $I$-measure of Yeung, is occasionally unable to discern between qualitatively distinct systems. In previous work, we presented a refinement of this signed measure space and demonstrated its capability to represent many quantities, which we called logarithmically decomposable quantities. In the present work we demonstrate that this framework has natural algebraic behaviour which can be expressed in terms of ideals (characterised here as upper-sets), and we show that this behaviour allows us to make various counting arguments and characterise many fixed-parity information quantity expressions. As an application, we give an algebraic proof that the only completely synergistic system of three finite variables $X$, $Y$ and $Z = f(X,Y)$ is the XOR gate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信