多参考对齐的力矩约束和相位恢复

Vahid Shahverdi, Emanuel Ström, Joakim Andén
{"title":"多参考对齐的力矩约束和相位恢复","authors":"Vahid Shahverdi, Emanuel Ström, Joakim Andén","doi":"arxiv-2409.04868","DOIUrl":null,"url":null,"abstract":"Multireference alignment (MRA) refers to the problem of recovering a signal\nfrom noisy samples subject to random circular shifts. Expectation maximization\n(EM) and variational approaches use statistical modeling to achieve high\naccuracy at the cost of solving computationally expensive optimization\nproblems. The method of moments, instead, achieves fast reconstructions by\nutilizing the power spectrum and bispectrum to determine the signal up to\nshift. Our approach combines the two philosophies by viewing the power spectrum\nas a manifold on which to constrain the signal. We then maximize the data\nlikelihood function on this manifold with a gradient-based approach to estimate\nthe true signal. Algorithmically, our method involves iterating between\ntemplate alignment and projections onto the manifold. The method offers\nincreased speed compared to EM and demonstrates improved accuracy over\nbispectrum-based methods.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moment Constraints and Phase Recovery for Multireference Alignment\",\"authors\":\"Vahid Shahverdi, Emanuel Ström, Joakim Andén\",\"doi\":\"arxiv-2409.04868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multireference alignment (MRA) refers to the problem of recovering a signal\\nfrom noisy samples subject to random circular shifts. Expectation maximization\\n(EM) and variational approaches use statistical modeling to achieve high\\naccuracy at the cost of solving computationally expensive optimization\\nproblems. The method of moments, instead, achieves fast reconstructions by\\nutilizing the power spectrum and bispectrum to determine the signal up to\\nshift. Our approach combines the two philosophies by viewing the power spectrum\\nas a manifold on which to constrain the signal. We then maximize the data\\nlikelihood function on this manifold with a gradient-based approach to estimate\\nthe true signal. Algorithmically, our method involves iterating between\\ntemplate alignment and projections onto the manifold. The method offers\\nincreased speed compared to EM and demonstrates improved accuracy over\\nbispectrum-based methods.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多参考对齐(MRA)是指从随机圆周偏移的噪声样本中恢复信号的问题。期望最大化(EM)和变异法使用统计建模来实现高精度,但代价是要解决计算成本高昂的优化问题。而矩量法则利用功率谱和双谱来确定信号的移动,从而实现快速重建。我们的方法结合了这两种理念,将功率谱视为一个流形,在此流形上对信号进行约束。然后,我们通过基于梯度的方法最大化流形上的数据似然函数,从而估计出真实信号。在算法上,我们的方法包括在模板对齐和流形上的投影之间进行迭代。与 EM 方法相比,该方法的速度更快,准确度也比基于双谱的方法更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment Constraints and Phase Recovery for Multireference Alignment
Multireference alignment (MRA) refers to the problem of recovering a signal from noisy samples subject to random circular shifts. Expectation maximization (EM) and variational approaches use statistical modeling to achieve high accuracy at the cost of solving computationally expensive optimization problems. The method of moments, instead, achieves fast reconstructions by utilizing the power spectrum and bispectrum to determine the signal up to shift. Our approach combines the two philosophies by viewing the power spectrum as a manifold on which to constrain the signal. We then maximize the data likelihood function on this manifold with a gradient-based approach to estimate the true signal. Algorithmically, our method involves iterating between template alignment and projections onto the manifold. The method offers increased speed compared to EM and demonstrates improved accuracy over bispectrum-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信