SpikingRx:从神经接收器到尖峰接收器

Ankit Gupta, Onur Dizdar, Yun Chen, Stephen Wang
{"title":"SpikingRx:从神经接收器到尖峰接收器","authors":"Ankit Gupta, Onur Dizdar, Yun Chen, Stephen Wang","doi":"arxiv-2409.05610","DOIUrl":null,"url":null,"abstract":"In this work, we propose an energy efficient neuromorphic receiver to replace\nmultiple signal-processing blocks at the receiver by a Spiking Neural Network\n(SNN) based module, called SpikingRx. We propose a deep convolutional SNN with\nspike-element-wise ResNet layers which takes a whole OFDM grid compliant with\n5G specifications and provides soft outputs for decoded bits that can be used\nas log-likelihood ratios. We propose to employ the surrogate gradient descent\nmethod for training the SpikingRx and focus on its generalizability and\nrobustness to quantization. Moreover, the interpretability of the proposed\nSpikingRx is studied by a comprehensive ablation study. Our extensive numerical\nsimulations show that SpikingRx is capable of achieving significant block error\nrate performance gain compared to conventional 5G receivers and similar\nperformance compared to its traditional NN-based counterparts with\napproximately 9x less energy consumption.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SpikingRx: From Neural to Spiking Receiver\",\"authors\":\"Ankit Gupta, Onur Dizdar, Yun Chen, Stephen Wang\",\"doi\":\"arxiv-2409.05610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose an energy efficient neuromorphic receiver to replace\\nmultiple signal-processing blocks at the receiver by a Spiking Neural Network\\n(SNN) based module, called SpikingRx. We propose a deep convolutional SNN with\\nspike-element-wise ResNet layers which takes a whole OFDM grid compliant with\\n5G specifications and provides soft outputs for decoded bits that can be used\\nas log-likelihood ratios. We propose to employ the surrogate gradient descent\\nmethod for training the SpikingRx and focus on its generalizability and\\nrobustness to quantization. Moreover, the interpretability of the proposed\\nSpikingRx is studied by a comprehensive ablation study. Our extensive numerical\\nsimulations show that SpikingRx is capable of achieving significant block error\\nrate performance gain compared to conventional 5G receivers and similar\\nperformance compared to its traditional NN-based counterparts with\\napproximately 9x less energy consumption.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种高能效神经形态接收器,用基于尖峰神经网络(SNN)的模块(称为 SpikingRx)取代接收器上的多个信号处理模块。我们提出了一种深度卷积 SNN,该 SNN 具有尖峰-元素-ResNet 层,可接收符合 5G 规范的整个 OFDM 网格,并提供可用作对数似然比的解码比特软输出。我们建议采用替代梯度下降法来训练 SpikingRx,并重点关注其通用性和对量化的稳健性。此外,我们还通过全面的消融研究对所提出的 SpikingRx 的可解释性进行了研究。我们的大量数值模拟表明,与传统的 5G 接收机相比,SpikingRx 能够实现显著的块误码率性能增益;与传统的基于 NN 的接收机相比,SpikingRx 能够实现类似的性能,同时能耗降低约 9 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SpikingRx: From Neural to Spiking Receiver
In this work, we propose an energy efficient neuromorphic receiver to replace multiple signal-processing blocks at the receiver by a Spiking Neural Network (SNN) based module, called SpikingRx. We propose a deep convolutional SNN with spike-element-wise ResNet layers which takes a whole OFDM grid compliant with 5G specifications and provides soft outputs for decoded bits that can be used as log-likelihood ratios. We propose to employ the surrogate gradient descent method for training the SpikingRx and focus on its generalizability and robustness to quantization. Moreover, the interpretability of the proposed SpikingRx is studied by a comprehensive ablation study. Our extensive numerical simulations show that SpikingRx is capable of achieving significant block error rate performance gain compared to conventional 5G receivers and similar performance compared to its traditional NN-based counterparts with approximately 9x less energy consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信