{"title":"无记忆信道上空间耦合稀疏回归编码的错误概率","authors":"Yuhao Liu, Yizhou Xu, Tianqi Hou","doi":"arxiv-2409.05745","DOIUrl":null,"url":null,"abstract":"Sparse Regression Codes (SPARCs) are capacity-achieving codes introduced for\ncommunication over the Additive White Gaussian Noise (AWGN) channels and were\nlater extended to general memoryless channels. In particular it was shown via\nthreshold saturation that Spatially Coupled Sparse Regression Codes (SC-SPARCs)\nare capacity-achieving over general memoryless channels when using an\nApproximate Message Passing decoder (AMP). This paper, for the first time\nrigorously, analyzes the non-asymptotic performance of the Generalized\nApproximate Message Passing (GAMP) decoder of SC-SPARCs over memoryless\nchannels, and proves exponential decaying error probability with respect to the\ncode length.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Error Probability of Spatially Coupled Sparse Regression Codes over Memoryless Channels\",\"authors\":\"Yuhao Liu, Yizhou Xu, Tianqi Hou\",\"doi\":\"arxiv-2409.05745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse Regression Codes (SPARCs) are capacity-achieving codes introduced for\\ncommunication over the Additive White Gaussian Noise (AWGN) channels and were\\nlater extended to general memoryless channels. In particular it was shown via\\nthreshold saturation that Spatially Coupled Sparse Regression Codes (SC-SPARCs)\\nare capacity-achieving over general memoryless channels when using an\\nApproximate Message Passing decoder (AMP). This paper, for the first time\\nrigorously, analyzes the non-asymptotic performance of the Generalized\\nApproximate Message Passing (GAMP) decoder of SC-SPARCs over memoryless\\nchannels, and proves exponential decaying error probability with respect to the\\ncode length.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
稀疏回归码(Sparse Regression Codes,SPARCs)是一种在加性白高斯噪声(Additive White Gaussian Noise,AWGN)信道通信中实现容量的编码,后来被扩展到一般无记忆信道。研究特别表明,当使用近似信息传递解码器(AMP)时,空间耦合稀疏回归码(SC-SPARCs)在一般无记忆信道上的容量可达阈值饱和。本文首次正式分析了 SC-SPARC 的广义近似消息传递(GAMP)解码器在无存储器信道上的非渐近性能,并证明了错误概率随编码长度呈指数衰减。
The Error Probability of Spatially Coupled Sparse Regression Codes over Memoryless Channels
Sparse Regression Codes (SPARCs) are capacity-achieving codes introduced for
communication over the Additive White Gaussian Noise (AWGN) channels and were
later extended to general memoryless channels. In particular it was shown via
threshold saturation that Spatially Coupled Sparse Regression Codes (SC-SPARCs)
are capacity-achieving over general memoryless channels when using an
Approximate Message Passing decoder (AMP). This paper, for the first time
rigorously, analyzes the non-asymptotic performance of the Generalized
Approximate Message Passing (GAMP) decoder of SC-SPARCs over memoryless
channels, and proves exponential decaying error probability with respect to the
code length.