高斯多输入多输出信道的计算前向多路访问

Lanwei Zhang, Jamie Evans, Jingge Zhu
{"title":"高斯多输入多输出信道的计算前向多路访问","authors":"Lanwei Zhang, Jamie Evans, Jingge Zhu","doi":"arxiv-2409.06110","DOIUrl":null,"url":null,"abstract":"Compute-forward multiple access (CFMA) is a multiple access transmission\nscheme based on Compute-and-Forward (CF) which allows the receiver to first\ndecode linear combinations of the transmitted signals and then solve for\nindividual messages. This paper extends the CFMA scheme to a two-user Gaussian\nmultiple-input multiple-output (MIMO) multiple access channel (MAC). We propose\nthe CFMA serial coding scheme (SCS) and the CFMA parallel coding scheme (PCS)\nwith nested lattice codes. We first derive the expression of the achievable\nrate pair for MIMO MAC with CFMA-SCS. We prove a general condition under which\nCFMA-SCS can achieve the sum capacity of the channel. Furthermore, this result\nis specialized to single-input multiple-output (SIMO) and $2$-by-$2$ diagonal\nMIMO multiple access channels, for which more explicit sum capacity-achieving\nconditions on power and channel matrices are derived. We construct an\nequivalent SIMO model for CFMA-PCS and also derive the achievable rates. Its\nsum capacity achieving conditions are then analysed. Numerical results are\nprovided for the performance of CFMA-SCS and CFMA-PCS in different channel\nconditions. In general, CFMA-PCS has better sum capacity achievability with\nhigher coding complexity.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compute-Forward Multiple Access for Gaussian MIMO Channels\",\"authors\":\"Lanwei Zhang, Jamie Evans, Jingge Zhu\",\"doi\":\"arxiv-2409.06110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compute-forward multiple access (CFMA) is a multiple access transmission\\nscheme based on Compute-and-Forward (CF) which allows the receiver to first\\ndecode linear combinations of the transmitted signals and then solve for\\nindividual messages. This paper extends the CFMA scheme to a two-user Gaussian\\nmultiple-input multiple-output (MIMO) multiple access channel (MAC). We propose\\nthe CFMA serial coding scheme (SCS) and the CFMA parallel coding scheme (PCS)\\nwith nested lattice codes. We first derive the expression of the achievable\\nrate pair for MIMO MAC with CFMA-SCS. We prove a general condition under which\\nCFMA-SCS can achieve the sum capacity of the channel. Furthermore, this result\\nis specialized to single-input multiple-output (SIMO) and $2$-by-$2$ diagonal\\nMIMO multiple access channels, for which more explicit sum capacity-achieving\\nconditions on power and channel matrices are derived. We construct an\\nequivalent SIMO model for CFMA-PCS and also derive the achievable rates. Its\\nsum capacity achieving conditions are then analysed. Numerical results are\\nprovided for the performance of CFMA-SCS and CFMA-PCS in different channel\\nconditions. In general, CFMA-PCS has better sum capacity achievability with\\nhigher coding complexity.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算前向多路存取(CFMA)是一种基于计算前向(CF)的多路存取传输方案,它允许接收器首先解码传输信号的线性组合,然后求解单个信息。本文将 CFMA 方案扩展到双用户高斯多输入多输出(MIMO)多接入信道(MAC)。我们提出了 CFMA 串行编码方案(SCS)和 CFMA 并行编码方案(PCS)。我们首先推导出采用 CFMA-SCS 的 MIMO MAC 的实现能力对的表达式。我们证明了 CFMA-SCS 可以达到信道总容量的一般条件。此外,这一结果还专门适用于单输入多输出(SIMO)和 2 美元乘 2 美元的对角 MIMO 多路访问信道,并为其推导了更明确的功率和信道矩阵的总容量实现条件。我们为 CFMA-PCS 构建了一个等效的 SIMO 模型,并推导出了可实现的速率。然后分析了其总和容量实现条件。我们提供了 CFMA-SCS 和 CFMA-PCS 在不同信道条件下的性能数值结果。一般来说,CFMA-PCS 在编码复杂度较高的情况下具有更好的总容量实现能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compute-Forward Multiple Access for Gaussian MIMO Channels
Compute-forward multiple access (CFMA) is a multiple access transmission scheme based on Compute-and-Forward (CF) which allows the receiver to first decode linear combinations of the transmitted signals and then solve for individual messages. This paper extends the CFMA scheme to a two-user Gaussian multiple-input multiple-output (MIMO) multiple access channel (MAC). We propose the CFMA serial coding scheme (SCS) and the CFMA parallel coding scheme (PCS) with nested lattice codes. We first derive the expression of the achievable rate pair for MIMO MAC with CFMA-SCS. We prove a general condition under which CFMA-SCS can achieve the sum capacity of the channel. Furthermore, this result is specialized to single-input multiple-output (SIMO) and $2$-by-$2$ diagonal MIMO multiple access channels, for which more explicit sum capacity-achieving conditions on power and channel matrices are derived. We construct an equivalent SIMO model for CFMA-PCS and also derive the achievable rates. Its sum capacity achieving conditions are then analysed. Numerical results are provided for the performance of CFMA-SCS and CFMA-PCS in different channel conditions. In general, CFMA-PCS has better sum capacity achievability with higher coding complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信