用多项式逼近两个矩阵的解析函数的估计值

IF 0.8 Q2 MATHEMATICS
V. G. Kurbatov, I. V. Kurbatova
{"title":"用多项式逼近两个矩阵的解析函数的估计值","authors":"V. G. Kurbatov, I. V. Kurbatova","doi":"10.1134/s1995080224601206","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Let <span>\\(U,V\\subseteq\\mathbb{C}\\)</span> be open convex sets, and <span>\\(z_{1}\\)</span>,\n<span>\\(z_{2}\\)</span>, <span>\\(\\dots,z_{N}\\in U\\)</span> and <span>\\(w_{1}\\)</span>, <span>\\(w_{2}\\)</span>, <span>\\(\\dots,w_{M}\\in V\\)</span> be\n(maybe repetitive) points. Let <span>\\(f:\\,U\\times V\\to\\mathbb{C}\\)</span> be an\nanalytic function. Let the interpolating polynomial <span>\\(p\\)</span> be\ndetermined by the values of <span>\\(f\\)</span> on the rectangular grid\n<span>\\((z_{i},w_{j})\\)</span>, <span>\\(i=1,2,\\dots,N\\)</span>, <span>\\(j=1,2,\\dots,M\\)</span>. Let <span>\\(A\\)</span> and <span>\\(B\\)</span>\nbe matrices of the sizes <span>\\(n\\times n\\)</span> and <span>\\(m\\times m\\)</span>,\nrespectively. The function <span>\\(f\\)</span> of <span>\\(A\\)</span> and <span>\\(B\\)</span> can be defined by\nthe formula</p><span>$$f(A,B)=\\frac{1}{(2\\pi i)^{2}}\\int\\limits_{\\Gamma_{1}}\\int\\limits_{\\Gamma_{2}}f(\\lambda,\\mu)(\\lambda\\mathbf{1}-A)^{-1}\\otimes(\\mu\\mathbf{1}-B)^{-1}\\,d\\mu\\,d\\lambda,$$</span><p>where <span>\\(\\Gamma_{1}\\)</span> and <span>\\(\\Gamma_{2}\\)</span> surround the spectra <span>\\(\\sigma(A)\\)</span>\nand <span>\\(\\sigma(B)\\)</span>, respectively; <span>\\(p(A,B)\\)</span> is defined in the same\nway. An estimate of <span>\\(||f(A,B)-p(A,B)||\\)</span> is given.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Estimate of Approximation of an Analytic Function of Two Matrices by a Polynomial\",\"authors\":\"V. G. Kurbatov, I. V. Kurbatova\",\"doi\":\"10.1134/s1995080224601206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Let <span>\\\\(U,V\\\\subseteq\\\\mathbb{C}\\\\)</span> be open convex sets, and <span>\\\\(z_{1}\\\\)</span>,\\n<span>\\\\(z_{2}\\\\)</span>, <span>\\\\(\\\\dots,z_{N}\\\\in U\\\\)</span> and <span>\\\\(w_{1}\\\\)</span>, <span>\\\\(w_{2}\\\\)</span>, <span>\\\\(\\\\dots,w_{M}\\\\in V\\\\)</span> be\\n(maybe repetitive) points. Let <span>\\\\(f:\\\\,U\\\\times V\\\\to\\\\mathbb{C}\\\\)</span> be an\\nanalytic function. Let the interpolating polynomial <span>\\\\(p\\\\)</span> be\\ndetermined by the values of <span>\\\\(f\\\\)</span> on the rectangular grid\\n<span>\\\\((z_{i},w_{j})\\\\)</span>, <span>\\\\(i=1,2,\\\\dots,N\\\\)</span>, <span>\\\\(j=1,2,\\\\dots,M\\\\)</span>. Let <span>\\\\(A\\\\)</span> and <span>\\\\(B\\\\)</span>\\nbe matrices of the sizes <span>\\\\(n\\\\times n\\\\)</span> and <span>\\\\(m\\\\times m\\\\)</span>,\\nrespectively. The function <span>\\\\(f\\\\)</span> of <span>\\\\(A\\\\)</span> and <span>\\\\(B\\\\)</span> can be defined by\\nthe formula</p><span>$$f(A,B)=\\\\frac{1}{(2\\\\pi i)^{2}}\\\\int\\\\limits_{\\\\Gamma_{1}}\\\\int\\\\limits_{\\\\Gamma_{2}}f(\\\\lambda,\\\\mu)(\\\\lambda\\\\mathbf{1}-A)^{-1}\\\\otimes(\\\\mu\\\\mathbf{1}-B)^{-1}\\\\,d\\\\mu\\\\,d\\\\lambda,$$</span><p>where <span>\\\\(\\\\Gamma_{1}\\\\)</span> and <span>\\\\(\\\\Gamma_{2}\\\\)</span> surround the spectra <span>\\\\(\\\\sigma(A)\\\\)</span>\\nand <span>\\\\(\\\\sigma(B)\\\\)</span>, respectively; <span>\\\\(p(A,B)\\\\)</span> is defined in the same\\nway. An estimate of <span>\\\\(||f(A,B)-p(A,B)||\\\\)</span> is given.</p>\",\"PeriodicalId\":46135,\"journal\":{\"name\":\"Lobachevskii Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lobachevskii Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995080224601206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224601206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

AbstractLet\(U,Vsubseteq\mathbb{C}\) be open convex sets, and \(z_{1}\),\(z_{2}\),\(\dots,z_{N}\in U\) and \(w_{1}\),\(w_{2}\),\(\dots,w_{M}\in V\) be (maybe repetitive) points.让(f:\,U\times Vto\mathbb{C}\) 是一个解析函数。让内插多项式(p)由矩形网格((z_{i},w_{j}))上的(f)值决定,(i=1,2,(dots,N),(j=1,2,(dots,M))。让(A)和(B)分别是大小为(n乘以n)和(m乘以m)的矩阵。公式$f(A,B)=frac{1}{(2\pi i)^{2}}\intlimits_{\Gamma_{1}}\intlimits_{\Gamma_{2}}f(\lambda、\其中 \(\Gamma_{1}\) 和 \(\Gamma_{2}\) 分別圍繞著 \(\sigma(A)\) 和 \(\sigma(B)\) 的光譜;\p(A,B)的定义是一样的。给出了 \(||f(A,B)-p(A,B)||\) 的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Estimate of Approximation of an Analytic Function of Two Matrices by a Polynomial

Abstract

Let \(U,V\subseteq\mathbb{C}\) be open convex sets, and \(z_{1}\), \(z_{2}\), \(\dots,z_{N}\in U\) and \(w_{1}\), \(w_{2}\), \(\dots,w_{M}\in V\) be (maybe repetitive) points. Let \(f:\,U\times V\to\mathbb{C}\) be an analytic function. Let the interpolating polynomial \(p\) be determined by the values of \(f\) on the rectangular grid \((z_{i},w_{j})\), \(i=1,2,\dots,N\), \(j=1,2,\dots,M\). Let \(A\) and \(B\) be matrices of the sizes \(n\times n\) and \(m\times m\), respectively. The function \(f\) of \(A\) and \(B\) can be defined by the formula

$$f(A,B)=\frac{1}{(2\pi i)^{2}}\int\limits_{\Gamma_{1}}\int\limits_{\Gamma_{2}}f(\lambda,\mu)(\lambda\mathbf{1}-A)^{-1}\otimes(\mu\mathbf{1}-B)^{-1}\,d\mu\,d\lambda,$$

where \(\Gamma_{1}\) and \(\Gamma_{2}\) surround the spectra \(\sigma(A)\) and \(\sigma(B)\), respectively; \(p(A,B)\) is defined in the same way. An estimate of \(||f(A,B)-p(A,B)||\) is given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
42.90%
发文量
127
期刊介绍: Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信