一种非线性粘性流体模型的弱可解性研究

IF 0.8 Q2 MATHEMATICS
E. I. Kostenko
{"title":"一种非线性粘性流体模型的弱可解性研究","authors":"E. I. Kostenko","doi":"10.1134/s199508022460119x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This paper is devoted to investigating the weak solvability of one model nonlinear viscosity fluid motion with memory along the trajectories of fluid particles determined by the velocity field. We used the topological approximation method for studying hydrodynamic problems, the theory of regular Lagrangian flow, when proving the solvability of the described model. The existence of at least one weak solution of the nonlinear viscosity fluid is proved in the paper.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":"37 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Weak Solvability of One Model Nonlinear Viscosity Fluid\",\"authors\":\"E. I. Kostenko\",\"doi\":\"10.1134/s199508022460119x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>This paper is devoted to investigating the weak solvability of one model nonlinear viscosity fluid motion with memory along the trajectories of fluid particles determined by the velocity field. We used the topological approximation method for studying hydrodynamic problems, the theory of regular Lagrangian flow, when proving the solvability of the described model. The existence of at least one weak solution of the nonlinear viscosity fluid is proved in the paper.</p>\",\"PeriodicalId\":46135,\"journal\":{\"name\":\"Lobachevskii Journal of Mathematics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lobachevskii Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s199508022460119x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s199508022460119x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文主要研究了一个非线性粘性流体运动模型的弱可解性,该模型具有沿速度场决定的流体粒子轨迹的记忆。在证明所述模型的可解性时,我们使用了研究流体力学问题的拓扑近似方法--正则拉格朗日流理论。文中证明了非线性粘性流体至少存在一个弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Weak Solvability of One Model Nonlinear Viscosity Fluid

Abstract

This paper is devoted to investigating the weak solvability of one model nonlinear viscosity fluid motion with memory along the trajectories of fluid particles determined by the velocity field. We used the topological approximation method for studying hydrodynamic problems, the theory of regular Lagrangian flow, when proving the solvability of the described model. The existence of at least one weak solution of the nonlinear viscosity fluid is proved in the paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
42.90%
发文量
127
期刊介绍: Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信