热力学一致耦合模型中可压缩流体流动的静态模式

IF 0.8 Q2 MATHEMATICS
N. N. Nazarenko, A. G. Knyazeva
{"title":"热力学一致耦合模型中可压缩流体流动的静态模式","authors":"N. N. Nazarenko, A. G. Knyazeva","doi":"10.1134/s1995080224602492","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Processes of fluid flow in porous media are encountered in various spheres of human activity. The structure of porous media is extremely diverse, and the gases, liquids, mixtures, suspensions, suspensions, etc. moving in them are significantly different in terms of transport and rheological properties. The models used by different authors to describe fluid flows in porous media are also different. In this paper, classical models of filtration theory are supplemented with thermodynamically consistent constitutive relations that take into account the phenomenon of barodiffusion and an example of a coupled two-dimensional model that takes into account the pressure change associated with the redistribution of impurities due to different transport phenomena is presented. Different flow regimes in a flat layer with asymmetric inlet and outlet are demonstrated.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":"297 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationary Modes of Compressible Fluid Flow in a Thermodynamically Consistent Coupled Model\",\"authors\":\"N. N. Nazarenko, A. G. Knyazeva\",\"doi\":\"10.1134/s1995080224602492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Processes of fluid flow in porous media are encountered in various spheres of human activity. The structure of porous media is extremely diverse, and the gases, liquids, mixtures, suspensions, suspensions, etc. moving in them are significantly different in terms of transport and rheological properties. The models used by different authors to describe fluid flows in porous media are also different. In this paper, classical models of filtration theory are supplemented with thermodynamically consistent constitutive relations that take into account the phenomenon of barodiffusion and an example of a coupled two-dimensional model that takes into account the pressure change associated with the redistribution of impurities due to different transport phenomena is presented. Different flow regimes in a flat layer with asymmetric inlet and outlet are demonstrated.</p>\",\"PeriodicalId\":46135,\"journal\":{\"name\":\"Lobachevskii Journal of Mathematics\",\"volume\":\"297 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lobachevskii Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995080224602492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224602492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 多孔介质中的流体流动过程在人类活动的各个领域都会遇到。多孔介质的结构千差万别,在其中运动的气体、液体、混合物、悬浮物、悬浮液等的输运和流变特性也大不相同。不同学者用来描述多孔介质中流体流动的模型也不尽相同。在本文中,过滤理论的经典模型得到了热力学一致的构成关系的补充,这些构成关系考虑到了巴氏扩散现象,并介绍了一个耦合二维模型的实例,该模型考虑到了与不同输运现象导致的杂质再分布相关的压力变化。演示了具有不对称入口和出口的扁平层中的不同流动状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stationary Modes of Compressible Fluid Flow in a Thermodynamically Consistent Coupled Model

Stationary Modes of Compressible Fluid Flow in a Thermodynamically Consistent Coupled Model

Abstract

Processes of fluid flow in porous media are encountered in various spheres of human activity. The structure of porous media is extremely diverse, and the gases, liquids, mixtures, suspensions, suspensions, etc. moving in them are significantly different in terms of transport and rheological properties. The models used by different authors to describe fluid flows in porous media are also different. In this paper, classical models of filtration theory are supplemented with thermodynamically consistent constitutive relations that take into account the phenomenon of barodiffusion and an example of a coupled two-dimensional model that takes into account the pressure change associated with the redistribution of impurities due to different transport phenomena is presented. Different flow regimes in a flat layer with asymmetric inlet and outlet are demonstrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
42.90%
发文量
127
期刊介绍: Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信