{"title":"利用斯特克洛夫型和 Farwig 边界条件求解双谐波问题","authors":"Giovanni Migliaccio, Hovik A. Matevossian","doi":"10.1134/s1995080224602479","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we consider a biharmonic problem with Steklov-type boundary conditions on one part of the boundary and with the Farwig condition on the other part. For this problem, questions of uniqueness of solutions are studied, and in the case of non-uniqueness, provided that the weighted Dirichlet integral is bounded, the exact number of linear independent solutions to the problem under consideration is established. Using the variational principle, uniqueness (non-uniqueness) theorems are obtained, as well as exact formulas for calculating the dimension of the space of solutions depending on the value of the parameter included in the weighted Dirichlet integral.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of the Biharmonic Problem with the Steklov-type and Farwig Boundary Conditions\",\"authors\":\"Giovanni Migliaccio, Hovik A. Matevossian\",\"doi\":\"10.1134/s1995080224602479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this paper, we consider a biharmonic problem with Steklov-type boundary conditions on one part of the boundary and with the Farwig condition on the other part. For this problem, questions of uniqueness of solutions are studied, and in the case of non-uniqueness, provided that the weighted Dirichlet integral is bounded, the exact number of linear independent solutions to the problem under consideration is established. Using the variational principle, uniqueness (non-uniqueness) theorems are obtained, as well as exact formulas for calculating the dimension of the space of solutions depending on the value of the parameter included in the weighted Dirichlet integral.</p>\",\"PeriodicalId\":46135,\"journal\":{\"name\":\"Lobachevskii Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lobachevskii Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995080224602479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224602479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Solution of the Biharmonic Problem with the Steklov-type and Farwig Boundary Conditions
Abstract
In this paper, we consider a biharmonic problem with Steklov-type boundary conditions on one part of the boundary and with the Farwig condition on the other part. For this problem, questions of uniqueness of solutions are studied, and in the case of non-uniqueness, provided that the weighted Dirichlet integral is bounded, the exact number of linear independent solutions to the problem under consideration is established. Using the variational principle, uniqueness (non-uniqueness) theorems are obtained, as well as exact formulas for calculating the dimension of the space of solutions depending on the value of the parameter included in the weighted Dirichlet integral.
期刊介绍:
Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.