论特殊函数之和

IF 0.8 Q2 MATHEMATICS
Yu. A. Brychkov
{"title":"论特殊函数之和","authors":"Yu. A. Brychkov","doi":"10.1134/s1995080224602418","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Sums of the form <span>\\(\\sum_{k=0}^{n}\\frac{\\prod_{i=1}^{p}\\left(a_{i}\\right)_{k}}{\\prod_{j=1}^{q}\\left(b_{j}\\right)_{k}}w^{k}{}F_{k}(z)\\)</span> are considered<span>\\(,\\)</span> where <span>\\(F_{k}(z)\\)</span> are special functions of hypergeometric type. Such sums involving Bessel, Struve, incomplete gamma functions, and Laguerre, Hermite, Jacobi, Legendre, and Chebyshev polynomials can be represented in terms of the Kampé de Fériet and generalized Horn hypergeometric functions of two variables.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Sums of Special Functions\",\"authors\":\"Yu. A. Brychkov\",\"doi\":\"10.1134/s1995080224602418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Sums of the form <span>\\\\(\\\\sum_{k=0}^{n}\\\\frac{\\\\prod_{i=1}^{p}\\\\left(a_{i}\\\\right)_{k}}{\\\\prod_{j=1}^{q}\\\\left(b_{j}\\\\right)_{k}}w^{k}{}F_{k}(z)\\\\)</span> are considered<span>\\\\(,\\\\)</span> where <span>\\\\(F_{k}(z)\\\\)</span> are special functions of hypergeometric type. Such sums involving Bessel, Struve, incomplete gamma functions, and Laguerre, Hermite, Jacobi, Legendre, and Chebyshev polynomials can be represented in terms of the Kampé de Fériet and generalized Horn hypergeometric functions of two variables.</p>\",\"PeriodicalId\":46135,\"journal\":{\"name\":\"Lobachevskii Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lobachevskii Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995080224602418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224602418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

AbstractSums of the form ((\sum_{k=0}^{n}\frac{prod_{i=1}^{p}\left(a_{i}\right)_{k}}{prod_{j=1}^{q}\left(b_{j}\right)_{k}}w^{k}{}F_{k}(z)\)被认为是(、\其中 \(F_{k}(z)\) 是超几何类型的特殊函数。涉及贝塞尔函数、斯特鲁夫函数、不完全伽马函数、拉盖尔多项式、赫米特多项式、雅可比多项式、勒让德多项式和切比雪夫多项式的这类和可以用两个变量的坎佩-德-费里特函数和广义霍恩超几何函数来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Sums of Special Functions

Abstract

Sums of the form \(\sum_{k=0}^{n}\frac{\prod_{i=1}^{p}\left(a_{i}\right)_{k}}{\prod_{j=1}^{q}\left(b_{j}\right)_{k}}w^{k}{}F_{k}(z)\) are considered\(,\) where \(F_{k}(z)\) are special functions of hypergeometric type. Such sums involving Bessel, Struve, incomplete gamma functions, and Laguerre, Hermite, Jacobi, Legendre, and Chebyshev polynomials can be represented in terms of the Kampé de Fériet and generalized Horn hypergeometric functions of two variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
42.90%
发文量
127
期刊介绍: Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信