{"title":"液体和固体物体的非稳态接触相互作用","authors":"G. V. Fedotenkov, A. A. Orekhov, L. N. Rabinskiy","doi":"10.1134/s1995080224602558","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The processes of unsteady contact interaction of liquids described by different mathematical models with solid deformable bodies are considered. Closed mathematical formulations of unsteady contact problems in the case of various models of liquids and linear-elastic bodies are developed. The analytical solution of the nonstationary problem of interaction between an acoustic fluid and a deformable solid body is obtained. The time integral Laplace transform is used to construct the solution. The distributions of displacements and stresses in the solid body, as well as pressure and velocity fields in the fluid during unsteady contact interaction are analyzed.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsteady Contact Interaction of Liquid and Solid Bodies\",\"authors\":\"G. V. Fedotenkov, A. A. Orekhov, L. N. Rabinskiy\",\"doi\":\"10.1134/s1995080224602558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The processes of unsteady contact interaction of liquids described by different mathematical models with solid deformable bodies are considered. Closed mathematical formulations of unsteady contact problems in the case of various models of liquids and linear-elastic bodies are developed. The analytical solution of the nonstationary problem of interaction between an acoustic fluid and a deformable solid body is obtained. The time integral Laplace transform is used to construct the solution. The distributions of displacements and stresses in the solid body, as well as pressure and velocity fields in the fluid during unsteady contact interaction are analyzed.</p>\",\"PeriodicalId\":46135,\"journal\":{\"name\":\"Lobachevskii Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lobachevskii Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995080224602558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224602558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Unsteady Contact Interaction of Liquid and Solid Bodies
Abstract
The processes of unsteady contact interaction of liquids described by different mathematical models with solid deformable bodies are considered. Closed mathematical formulations of unsteady contact problems in the case of various models of liquids and linear-elastic bodies are developed. The analytical solution of the nonstationary problem of interaction between an acoustic fluid and a deformable solid body is obtained. The time integral Laplace transform is used to construct the solution. The distributions of displacements and stresses in the solid body, as well as pressure and velocity fields in the fluid during unsteady contact interaction are analyzed.
期刊介绍:
Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.