库埃特-泰勒系统中的泰勒近柱状涡旋:向湍流的过渡

IF 0.8 Q2 MATHEMATICS
T. Akinaga, P. M. J. Trevelyan, S. C. Generalis
{"title":"库埃特-泰勒系统中的泰勒近柱状涡旋:向湍流的过渡","authors":"T. Akinaga, P. M. J. Trevelyan, S. C. Generalis","doi":"10.1134/s1995080224602388","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The analysis of the Taylor–Couette problem in the small gap limit is extended to the of nearly columnar (NC) solutions. The theoretical results are derived in the small-gap approximation which is not always well approximated in experiments. Despite this studies in the Cartesian frame work when compared with theoretical results and observations yield good agreement. For higher values of the axial wavenumber, <span>\\(\\beta\\)</span>, up to <span>\\(\\beta\\sim 3\\)</span> rather narrow Taylor vortices may be realized for Reynolds number <span>\\(R&lt;80\\)</span>. These vortices will become unstable to states with columnar components with increasing <span>\\(R\\)</span>. We show that for low <span>\\(R\\)</span>, <span>\\((R,\\beta)\\sim(62.2,3.5)\\)</span>, a state with a strong columnar component drifting in stream-wise direction exists for azimuthal wavenumbers <span>\\(\\alpha\\sim 0.17\\)</span> with <span>\\(\\beta=3.5\\)</span>. We examine the bifurcation sequence of these states.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taylor Nearly Columnar Vortices in the Couette–Taylor System: Transition to Turbulence\",\"authors\":\"T. Akinaga, P. M. J. Trevelyan, S. C. Generalis\",\"doi\":\"10.1134/s1995080224602388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The analysis of the Taylor–Couette problem in the small gap limit is extended to the of nearly columnar (NC) solutions. The theoretical results are derived in the small-gap approximation which is not always well approximated in experiments. Despite this studies in the Cartesian frame work when compared with theoretical results and observations yield good agreement. For higher values of the axial wavenumber, <span>\\\\(\\\\beta\\\\)</span>, up to <span>\\\\(\\\\beta\\\\sim 3\\\\)</span> rather narrow Taylor vortices may be realized for Reynolds number <span>\\\\(R&lt;80\\\\)</span>. These vortices will become unstable to states with columnar components with increasing <span>\\\\(R\\\\)</span>. We show that for low <span>\\\\(R\\\\)</span>, <span>\\\\((R,\\\\beta)\\\\sim(62.2,3.5)\\\\)</span>, a state with a strong columnar component drifting in stream-wise direction exists for azimuthal wavenumbers <span>\\\\(\\\\alpha\\\\sim 0.17\\\\)</span> with <span>\\\\(\\\\beta=3.5\\\\)</span>. We examine the bifurcation sequence of these states.</p>\",\"PeriodicalId\":46135,\"journal\":{\"name\":\"Lobachevskii Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lobachevskii Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995080224602388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224602388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 泰勒-库埃特问题在小间隙极限下的分析扩展到了近柱状(NC)解。理论结果是在小间隙近似条件下得出的,而在实验中并不总是能很好地近似。尽管如此,在笛卡尔框架下进行的研究与理论结果和观测结果进行比较后,还是得出了很好的一致结论。对于较高的轴向波数值(\(\beta\)),在雷诺数(R<80\)下,可能会出现相当窄的(\(\beta\sim 3\))泰勒涡。随着(R)的增加,这些漩涡会变得不稳定,变成具有柱状成分的状态。我们表明,对于低雷诺数,((R,\beta)\sim(62.2,3.5)),在方位角波数((\alpha\sim 0.17))和((beta=3.5)时,存在一个具有强柱状成分的流向漂移状态。我们研究了这些状态的分岔序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Taylor Nearly Columnar Vortices in the Couette–Taylor System: Transition to Turbulence

Taylor Nearly Columnar Vortices in the Couette–Taylor System: Transition to Turbulence

Abstract

The analysis of the Taylor–Couette problem in the small gap limit is extended to the of nearly columnar (NC) solutions. The theoretical results are derived in the small-gap approximation which is not always well approximated in experiments. Despite this studies in the Cartesian frame work when compared with theoretical results and observations yield good agreement. For higher values of the axial wavenumber, \(\beta\), up to \(\beta\sim 3\) rather narrow Taylor vortices may be realized for Reynolds number \(R<80\). These vortices will become unstable to states with columnar components with increasing \(R\). We show that for low \(R\), \((R,\beta)\sim(62.2,3.5)\), a state with a strong columnar component drifting in stream-wise direction exists for azimuthal wavenumbers \(\alpha\sim 0.17\) with \(\beta=3.5\). We examine the bifurcation sequence of these states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
42.90%
发文量
127
期刊介绍: Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信