乘法灰色稳定性

IF 0.6 3区 数学 Q3 MATHEMATICS
María Amelia Salazar, Daniele Sepe, Camilo Angulo
{"title":"乘法灰色稳定性","authors":"María Amelia Salazar, Daniele Sepe, Camilo Angulo","doi":"10.4310/jsg.2024.v22.n1.a4","DOIUrl":null,"url":null,"abstract":"In this paper we prove Gray stability for compact contact groupoids and we use it to prove stability results for deformations of the induced Jacobi bundles.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"281 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative gray stability\",\"authors\":\"María Amelia Salazar, Daniele Sepe, Camilo Angulo\",\"doi\":\"10.4310/jsg.2024.v22.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove Gray stability for compact contact groupoids and we use it to prove stability results for deformations of the induced Jacobi bundles.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"281 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2024.v22.n1.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2024.v22.n1.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了紧凑接触群集的格雷稳定性,并用它证明了诱导雅可比束变形的稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicative gray stability
In this paper we prove Gray stability for compact contact groupoids and we use it to prove stability results for deformations of the induced Jacobi bundles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信