无平移点的球面接触形态

IF 0.6 3区 数学 Q3 MATHEMATICS
Dylan Cant
{"title":"无平移点的球面接触形态","authors":"Dylan Cant","doi":"10.4310/jsg.2024.v22.n1.a1","DOIUrl":null,"url":null,"abstract":"We construct a contactomorphism of $(S^{2n-1}, \\alpha_{\\mathrm{std}})$ which does not have any translated points, providing a negative answer to a conjecture posed in $\\href{https://doi.org/10.1007/s10711-012-9741-1}{\\textrm{[San13]}}$.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contactomorphisms of the sphere without translated points\",\"authors\":\"Dylan Cant\",\"doi\":\"10.4310/jsg.2024.v22.n1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a contactomorphism of $(S^{2n-1}, \\\\alpha_{\\\\mathrm{std}})$ which does not have any translated points, providing a negative answer to a conjecture posed in $\\\\href{https://doi.org/10.1007/s10711-012-9741-1}{\\\\textrm{[San13]}}$.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2024.v22.n1.a1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2024.v22.n1.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了$(S^{2n-1}, \alpha_\{mathrm{std}})$的接触同构,它没有任何平移点,从而为$\href{https://doi.org/10.1007/s10711-012-9741-1}{\textrm{[San13]}}$中提出的一个猜想提供了否定答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contactomorphisms of the sphere without translated points
We construct a contactomorphism of $(S^{2n-1}, \alpha_{\mathrm{std}})$ which does not have any translated points, providing a negative answer to a conjecture posed in $\href{https://doi.org/10.1007/s10711-012-9741-1}{\textrm{[San13]}}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信