{"title":"无平移点的球面接触形态","authors":"Dylan Cant","doi":"10.4310/jsg.2024.v22.n1.a1","DOIUrl":null,"url":null,"abstract":"We construct a contactomorphism of $(S^{2n-1}, \\alpha_{\\mathrm{std}})$ which does not have any translated points, providing a negative answer to a conjecture posed in $\\href{https://doi.org/10.1007/s10711-012-9741-1}{\\textrm{[San13]}}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contactomorphisms of the sphere without translated points\",\"authors\":\"Dylan Cant\",\"doi\":\"10.4310/jsg.2024.v22.n1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a contactomorphism of $(S^{2n-1}, \\\\alpha_{\\\\mathrm{std}})$ which does not have any translated points, providing a negative answer to a conjecture posed in $\\\\href{https://doi.org/10.1007/s10711-012-9741-1}{\\\\textrm{[San13]}}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2024.v22.n1.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2024.v22.n1.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contactomorphisms of the sphere without translated points
We construct a contactomorphism of $(S^{2n-1}, \alpha_{\mathrm{std}})$ which does not have any translated points, providing a negative answer to a conjecture posed in $\href{https://doi.org/10.1007/s10711-012-9741-1}{\textrm{[San13]}}$.