脱掉电子衣服

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Andrzej Herdegen
{"title":"脱掉电子衣服","authors":"Andrzej Herdegen","doi":"10.1007/s00023-024-01476-5","DOIUrl":null,"url":null,"abstract":"<p>The extended algebra of the free electromagnetic fields, including infrared-singular fields, and the almost radial gauge, both introduced earlier, are postulated for the construction of the quantum electrodynamics in a Hilbert space (no indefinite metric). Both the Dirac and electromagnetic fields are constructed up to the first order (based on the incoming fields) as operators in the Hilbert space and shown to have physically well-interpretable asymptotic behavior in far past and spacelike separations. The Dirac field tends in far past to the free incoming field, carrying its own Coulomb field, but with no ‘soft photon dressing.’ The spacelike asymptotic limit of the electromagnetic field yields a conserved operator field, which is a sum of contributions of the incoming Coulomb field, and of the low-energy limit of the incoming free electromagnetic field. This should agree with the operator field similarly constructed with the use of outgoing fields, which then relates these past and future characteristics. Higher orders are expected not to change this picture, but their construction needs a treatment of the UV question, which has not been undertaken and remains a problem for further investigation.</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"17 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Undressing the Electron\",\"authors\":\"Andrzej Herdegen\",\"doi\":\"10.1007/s00023-024-01476-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The extended algebra of the free electromagnetic fields, including infrared-singular fields, and the almost radial gauge, both introduced earlier, are postulated for the construction of the quantum electrodynamics in a Hilbert space (no indefinite metric). Both the Dirac and electromagnetic fields are constructed up to the first order (based on the incoming fields) as operators in the Hilbert space and shown to have physically well-interpretable asymptotic behavior in far past and spacelike separations. The Dirac field tends in far past to the free incoming field, carrying its own Coulomb field, but with no ‘soft photon dressing.’ The spacelike asymptotic limit of the electromagnetic field yields a conserved operator field, which is a sum of contributions of the incoming Coulomb field, and of the low-energy limit of the incoming free electromagnetic field. This should agree with the operator field similarly constructed with the use of outgoing fields, which then relates these past and future characteristics. Higher orders are expected not to change this picture, but their construction needs a treatment of the UV question, which has not been undertaken and remains a problem for further investigation.</p>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1007/s00023-024-01476-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-024-01476-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了在希尔伯特空间(无不确定度量)中构建量子电动力学,我们假设了自由电磁场的扩展代数(包括红外奇异场)和几乎径向量规(两者都在前面介绍过)。狄拉克场和电磁场都是作为希尔伯特空间中的算子构造到一阶的(基于传入场),并证明它们在远古和类似空间的分离中具有物理上可解释的渐近行为。狄拉克场在远古时代趋向于自由输入场,携带自己的库仑场,但没有 "软光子修饰"。电磁场的空间渐近极限产生了一个守恒算子场,它是传入库仑场和传入自由电磁场低能极限的贡献之和。这应该与使用传出场构建的算子场相吻合,从而将这些过去和未来的特征联系起来。更高的阶数预计不会改变这一情况,但它们的构造需要处理紫外问题,而这一问题尚未解决,仍有待进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Undressing the Electron

The extended algebra of the free electromagnetic fields, including infrared-singular fields, and the almost radial gauge, both introduced earlier, are postulated for the construction of the quantum electrodynamics in a Hilbert space (no indefinite metric). Both the Dirac and electromagnetic fields are constructed up to the first order (based on the incoming fields) as operators in the Hilbert space and shown to have physically well-interpretable asymptotic behavior in far past and spacelike separations. The Dirac field tends in far past to the free incoming field, carrying its own Coulomb field, but with no ‘soft photon dressing.’ The spacelike asymptotic limit of the electromagnetic field yields a conserved operator field, which is a sum of contributions of the incoming Coulomb field, and of the low-energy limit of the incoming free electromagnetic field. This should agree with the operator field similarly constructed with the use of outgoing fields, which then relates these past and future characteristics. Higher orders are expected not to change this picture, but their construction needs a treatment of the UV question, which has not been undertaken and remains a problem for further investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信