二维经典和一维量子伊辛模型的 Kac-Ward 解法

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Georgios Athanasopoulos, Daniel Ueltschi
{"title":"二维经典和一维量子伊辛模型的 Kac-Ward 解法","authors":"Georgios Athanasopoulos, Daniel Ueltschi","doi":"10.1007/s00023-024-01479-2","DOIUrl":null,"url":null,"abstract":"<p>We give a rigorous derivation of the free energy of (i) the classical Ising model on the triangular lattice with translation-invariant coupling constants and (ii) the one-dimensional quantum Ising model. We use the method of Kac and Ward. The novel aspect is that the coupling constants may have negative signs. We describe the logarithmic singularity of the specific heat of the classical model and the validity of the Cimasoni–Duminil-Copin–Li formula for the critical temperature. We also discuss the quantum phase transition of the quantum model.\n</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"52 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kac–Ward Solution of the 2D Classical and 1D Quantum Ising Models\",\"authors\":\"Georgios Athanasopoulos, Daniel Ueltschi\",\"doi\":\"10.1007/s00023-024-01479-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a rigorous derivation of the free energy of (i) the classical Ising model on the triangular lattice with translation-invariant coupling constants and (ii) the one-dimensional quantum Ising model. We use the method of Kac and Ward. The novel aspect is that the coupling constants may have negative signs. We describe the logarithmic singularity of the specific heat of the classical model and the validity of the Cimasoni–Duminil-Copin–Li formula for the critical temperature. We also discuss the quantum phase transition of the quantum model.\\n</p>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1007/s00023-024-01479-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-024-01479-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们严格推导了 (i) 三角晶格上具有平移不变耦合常数的经典伊辛模型和 (ii) 一维量子伊辛模型的自由能。我们采用了 Kac 和 Ward 的方法。新颖之处在于耦合常数可以是负号。我们描述了经典模型比热的对数奇异性和临界温度 Cimasoni-Duminil-Copin-Li 公式的有效性。我们还讨论了量子模型的量子相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kac–Ward Solution of the 2D Classical and 1D Quantum Ising Models

Kac–Ward Solution of the 2D Classical and 1D Quantum Ising Models

We give a rigorous derivation of the free energy of (i) the classical Ising model on the triangular lattice with translation-invariant coupling constants and (ii) the one-dimensional quantum Ising model. We use the method of Kac and Ward. The novel aspect is that the coupling constants may have negative signs. We describe the logarithmic singularity of the specific heat of the classical model and the validity of the Cimasoni–Duminil-Copin–Li formula for the critical temperature. We also discuss the quantum phase transition of the quantum model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信