二维扰动磁性狄拉克系统的隧道估计值

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Esteban Cárdenas, Benjamín Pavez, Edgardo Stockmeyer
{"title":"二维扰动磁性狄拉克系统的隧道估计值","authors":"Esteban Cárdenas, Benjamín Pavez, Edgardo Stockmeyer","doi":"10.1007/s00023-024-01480-9","DOIUrl":null,"url":null,"abstract":"<p>We prove tunneling estimates for two-dimensional Dirac systems which are localized in space due to the presence of a magnetic field. The Hamiltonian driving the motion admits the decomposition <span>\\( H = H_0 + W\\)</span>, where <span>\\(H_0 \\)</span> is a rotationally symmetric magnetic Dirac operator and <i>W</i> is a position-dependent matrix-valued potential satisfying certain smoothness condition in the angular variable. A consequence of our results are upper bounds for the growth in time of the expected size of the system and its total angular momentum.</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunneling Estimates for Two-Dimensional Perturbed Magnetic Dirac Systems\",\"authors\":\"Esteban Cárdenas, Benjamín Pavez, Edgardo Stockmeyer\",\"doi\":\"10.1007/s00023-024-01480-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove tunneling estimates for two-dimensional Dirac systems which are localized in space due to the presence of a magnetic field. The Hamiltonian driving the motion admits the decomposition <span>\\\\( H = H_0 + W\\\\)</span>, where <span>\\\\(H_0 \\\\)</span> is a rotationally symmetric magnetic Dirac operator and <i>W</i> is a position-dependent matrix-valued potential satisfying certain smoothness condition in the angular variable. A consequence of our results are upper bounds for the growth in time of the expected size of the system and its total angular momentum.</p>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1007/s00023-024-01480-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-024-01480-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了由于磁场的存在而在空间局部化的二维狄拉克系统的隧道估计。驱动运动的哈密顿分解为\( H = H_0 + W\) ,其中\(H_0 \)是旋转对称的磁性狄拉克算子,W 是与位置相关的矩阵势,满足角变量中的某些平滑条件。我们的结果是系统预期大小及其总角动量随时间增长的上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunneling Estimates for Two-Dimensional Perturbed Magnetic Dirac Systems

We prove tunneling estimates for two-dimensional Dirac systems which are localized in space due to the presence of a magnetic field. The Hamiltonian driving the motion admits the decomposition \( H = H_0 + W\), where \(H_0 \) is a rotationally symmetric magnetic Dirac operator and W is a position-dependent matrix-valued potential satisfying certain smoothness condition in the angular variable. A consequence of our results are upper bounds for the growth in time of the expected size of the system and its total angular momentum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信