通过全基因组分析和基因组编辑探索茄科植物中 FAT 基因的作用

Sibel Bahadır, Mohamed Farah Abdulla, Karam Mostafa, Musa Kavas, Safa Hacıkamiloğlu, Orhan Kurt, Kubilay Yıldırım
{"title":"通过全基因组分析和基因组编辑探索茄科植物中 FAT 基因的作用","authors":"Sibel Bahadır, Mohamed Farah Abdulla, Karam Mostafa, Musa Kavas, Safa Hacıkamiloğlu, Orhan Kurt, Kubilay Yıldırım","doi":"10.1002/tpg2.20506","DOIUrl":null,"url":null,"abstract":"Plants produce numerous fatty acid derivatives, and some of these compounds have significant regulatory functions, such as governing effector‐induced resistance, systemic resistance, and other defense pathways. This study systematically identified and characterized eight FAT genes (Acyl‐acyl carrier protein thioesterases), four in the <jats:italic>Solanum lycopersicum</jats:italic> and four in the <jats:italic>Solanum tuberosum</jats:italic> genome. Phylogenetic analysis classified these genes into four distinct groups, exhibiting conserved domain structures across different plant species. Promoter analysis revealed various cis‐acting elements, most of which are associated with stress responsiveness and growth and development. Micro‐RNA (miRNA) analysis identified specific miRNAs, notably miRNA166, targeting different FAT genes in both species. Utilizing clustered regularly interspaced short palindromic repeats/CRISPR‐associated protein 9 (CRISPR/Cas9)‐mediated knockout, mutant lines for <jats:italic>SlFATB1</jats:italic> and <jats:italic>SlFATB3</jats:italic> were successfully generated and exhibited diverse mutation types. Biochemical evaluation of selected mutant lines revealed significant changes in fatty acid composition, with linoleic and linolenic acid content variations. The study also explored the impact of FAT gene knockout on tomato leaf architecture through scanning electron microscopy, providing insights into potential morphological alterations. Knocking out of FAT genes resulted in a significant reduction in both trichome and stoma density. These findings contribute to a comprehensive understanding of FAT genes in <jats:italic>Solanaceous</jats:italic> species, encompassing genetic, functional, and phenotypic aspects.","PeriodicalId":501653,"journal":{"name":"The Plant Genome","volume":"281 1","pages":"e20506"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the role of FAT genes in Solanaceae species through genome‐wide analysis and genome editing\",\"authors\":\"Sibel Bahadır, Mohamed Farah Abdulla, Karam Mostafa, Musa Kavas, Safa Hacıkamiloğlu, Orhan Kurt, Kubilay Yıldırım\",\"doi\":\"10.1002/tpg2.20506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plants produce numerous fatty acid derivatives, and some of these compounds have significant regulatory functions, such as governing effector‐induced resistance, systemic resistance, and other defense pathways. This study systematically identified and characterized eight FAT genes (Acyl‐acyl carrier protein thioesterases), four in the <jats:italic>Solanum lycopersicum</jats:italic> and four in the <jats:italic>Solanum tuberosum</jats:italic> genome. Phylogenetic analysis classified these genes into four distinct groups, exhibiting conserved domain structures across different plant species. Promoter analysis revealed various cis‐acting elements, most of which are associated with stress responsiveness and growth and development. Micro‐RNA (miRNA) analysis identified specific miRNAs, notably miRNA166, targeting different FAT genes in both species. Utilizing clustered regularly interspaced short palindromic repeats/CRISPR‐associated protein 9 (CRISPR/Cas9)‐mediated knockout, mutant lines for <jats:italic>SlFATB1</jats:italic> and <jats:italic>SlFATB3</jats:italic> were successfully generated and exhibited diverse mutation types. Biochemical evaluation of selected mutant lines revealed significant changes in fatty acid composition, with linoleic and linolenic acid content variations. The study also explored the impact of FAT gene knockout on tomato leaf architecture through scanning electron microscopy, providing insights into potential morphological alterations. Knocking out of FAT genes resulted in a significant reduction in both trichome and stoma density. These findings contribute to a comprehensive understanding of FAT genes in <jats:italic>Solanaceous</jats:italic> species, encompassing genetic, functional, and phenotypic aspects.\",\"PeriodicalId\":501653,\"journal\":{\"name\":\"The Plant Genome\",\"volume\":\"281 1\",\"pages\":\"e20506\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Genome\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/tpg2.20506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Genome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tpg2.20506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

植物会产生大量脂肪酸衍生物,其中一些化合物具有重要的调节功能,如调节效应器诱导的抗性、系统抗性和其他防御途径。这项研究系统地鉴定并描述了八个 FAT 基因(酰基载体蛋白硫酯酶),其中四个在茄属植物中,四个在块茎茄属植物基因组中。系统发育分析将这些基因分为四个不同的组,在不同植物物种中显示出保守的结构域。启动子分析揭示了各种顺式作用元件,其中大部分与胁迫响应性和生长发育有关。微 RNA(miRNA)分析发现了特定的 miRNA,特别是 miRNA166,它们在两个物种中都以不同的 FAT 基因为靶标。利用聚类规律性间隔短回文重复序列/CRISPR相关蛋白9(CRISPR/Cas9)介导的基因敲除,成功产生了SlFATB1和SlFATB3的突变株,并表现出不同的突变类型。对所选突变品系进行的生化评估显示,脂肪酸组成发生了显著变化,亚油酸和亚麻酸的含量发生了变化。研究还通过扫描电子显微镜探讨了 FAT 基因敲除对番茄叶片结构的影响,从而深入了解了潜在的形态学改变。敲除 FAT 基因会导致毛状体和气孔密度显著降低。这些发现有助于全面了解茄科植物的 FAT 基因,包括遗传、功能和表型等方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the role of FAT genes in Solanaceae species through genome‐wide analysis and genome editing
Plants produce numerous fatty acid derivatives, and some of these compounds have significant regulatory functions, such as governing effector‐induced resistance, systemic resistance, and other defense pathways. This study systematically identified and characterized eight FAT genes (Acyl‐acyl carrier protein thioesterases), four in the Solanum lycopersicum and four in the Solanum tuberosum genome. Phylogenetic analysis classified these genes into four distinct groups, exhibiting conserved domain structures across different plant species. Promoter analysis revealed various cis‐acting elements, most of which are associated with stress responsiveness and growth and development. Micro‐RNA (miRNA) analysis identified specific miRNAs, notably miRNA166, targeting different FAT genes in both species. Utilizing clustered regularly interspaced short palindromic repeats/CRISPR‐associated protein 9 (CRISPR/Cas9)‐mediated knockout, mutant lines for SlFATB1 and SlFATB3 were successfully generated and exhibited diverse mutation types. Biochemical evaluation of selected mutant lines revealed significant changes in fatty acid composition, with linoleic and linolenic acid content variations. The study also explored the impact of FAT gene knockout on tomato leaf architecture through scanning electron microscopy, providing insights into potential morphological alterations. Knocking out of FAT genes resulted in a significant reduction in both trichome and stoma density. These findings contribute to a comprehensive understanding of FAT genes in Solanaceous species, encompassing genetic, functional, and phenotypic aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信