Avinash Kant Kaushal, Annu Kumar Lakshya, Anirban Chowdhury
{"title":"重新审视稳定掺杂四方氧化锆体系的 \"加维标准 \"的有效性","authors":"Avinash Kant Kaushal, Annu Kumar Lakshya, Anirban Chowdhury","doi":"10.1557/s43578-024-01419-0","DOIUrl":null,"url":null,"abstract":"<p>Stabilization mechanisms involving doped zirconia systems have been discussed over the last 60 years. The primary objective of this work is to provide scientific clarifications regarding the relevance of Garvie factor for important doped zirconia systems. With the commercially popular compositions of yttria-stabilized zirconia (YSZ) systems, our results illustrate no relevance of a Garvie criterion for YSZ systems (for yttria doping ≥ 2.5 mol.%). The same was found to be true for ceria (12–20 mol.%)-doped zirconia (CeTZP) systems. The Garvie criterion seems to be strongly system dependent as it was found to be valid for tetragonal CaO-doped (3–4 mol.%) zirconia (CaSZ) systems. Contrary to a ‘consolidation factor’ that was credited for stabilization of tetragonal CaSZ ceramic, an opposite trend (between grain and particle size) was observed for YSZ and CeTZP systems. This was explained in terms of their possible difference and crossover between their respective surface and grain boundary diffusion parameters.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"49 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the validity of the ‘Garvie criterion’ for the stabilization of doped tetragonal zirconia systems\",\"authors\":\"Avinash Kant Kaushal, Annu Kumar Lakshya, Anirban Chowdhury\",\"doi\":\"10.1557/s43578-024-01419-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stabilization mechanisms involving doped zirconia systems have been discussed over the last 60 years. The primary objective of this work is to provide scientific clarifications regarding the relevance of Garvie factor for important doped zirconia systems. With the commercially popular compositions of yttria-stabilized zirconia (YSZ) systems, our results illustrate no relevance of a Garvie criterion for YSZ systems (for yttria doping ≥ 2.5 mol.%). The same was found to be true for ceria (12–20 mol.%)-doped zirconia (CeTZP) systems. The Garvie criterion seems to be strongly system dependent as it was found to be valid for tetragonal CaO-doped (3–4 mol.%) zirconia (CaSZ) systems. Contrary to a ‘consolidation factor’ that was credited for stabilization of tetragonal CaSZ ceramic, an opposite trend (between grain and particle size) was observed for YSZ and CeTZP systems. This was explained in terms of their possible difference and crossover between their respective surface and grain boundary diffusion parameters.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":16306,\"journal\":{\"name\":\"Journal of Materials Research\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-024-01419-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01419-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Revisiting the validity of the ‘Garvie criterion’ for the stabilization of doped tetragonal zirconia systems
Stabilization mechanisms involving doped zirconia systems have been discussed over the last 60 years. The primary objective of this work is to provide scientific clarifications regarding the relevance of Garvie factor for important doped zirconia systems. With the commercially popular compositions of yttria-stabilized zirconia (YSZ) systems, our results illustrate no relevance of a Garvie criterion for YSZ systems (for yttria doping ≥ 2.5 mol.%). The same was found to be true for ceria (12–20 mol.%)-doped zirconia (CeTZP) systems. The Garvie criterion seems to be strongly system dependent as it was found to be valid for tetragonal CaO-doped (3–4 mol.%) zirconia (CaSZ) systems. Contrary to a ‘consolidation factor’ that was credited for stabilization of tetragonal CaSZ ceramic, an opposite trend (between grain and particle size) was observed for YSZ and CeTZP systems. This was explained in terms of their possible difference and crossover between their respective surface and grain boundary diffusion parameters.
期刊介绍:
Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome.
• Novel materials discovery
• Electronic, photonic and magnetic materials
• Energy Conversion and storage materials
• New thermal and structural materials
• Soft materials
• Biomaterials and related topics
• Nanoscale science and technology
• Advances in materials characterization methods and techniques
• Computational materials science, modeling and theory