Adnan A Hirad, Faisal S. Fakhouri, Brian Raterman, Ronald Lakony, Maxwell Wang, Dakota Gonring, Baqir Kedwai, Arunark Kolipaka, Doran A Mix
{"title":"在人体胸主动脉和主动脉夹层模型中测量磁共振弹性成像衍生刚度的可行性","authors":"Adnan A Hirad, Faisal S. Fakhouri, Brian Raterman, Ronald Lakony, Maxwell Wang, Dakota Gonring, Baqir Kedwai, Arunark Kolipaka, Doran A Mix","doi":"10.1101/2024.09.05.611548","DOIUrl":null,"url":null,"abstract":"Type-B aortic dissection (TBAD) represents a serious medical emergency with up to a 50% associated 5-year mortality caused by thoracic aorta, dissection-associated aneurysmal (DAA) degeneration, and rupture. Unfortunately, conventional size related diagnostic methods cannot distinguish high-risk DAAs that benefit from surgical intervention from stable DAAs. Our goal is to use DAA stiffness measured with magnetic resonance elastography (MRE) as a biomarker to distinguish high-risk DAAs from stable DAAs. This is a feasibility study using MRE to 1) fabricate human-like geometries TBAD phantoms with different stiffnesses. 2) measure stiffness in TBAD phantoms with rheometry and 3) demonstrate the first successful application of MRE to the thoracic aorta of a human volunteer. Aortic dissection phantoms with heterogenous wall stiffness demonstrated the correlation between MRE-derived stiffness and rheometric measured stiffness. A pilot scan was performed in a healthy volunteer to test the technique's feasibility in the thoracic aorta.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Measuring Magnetic Resonance Elastography-derived Stiffness in Human Thoracic Aorta and Aortic Dissection Phantoms\",\"authors\":\"Adnan A Hirad, Faisal S. Fakhouri, Brian Raterman, Ronald Lakony, Maxwell Wang, Dakota Gonring, Baqir Kedwai, Arunark Kolipaka, Doran A Mix\",\"doi\":\"10.1101/2024.09.05.611548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type-B aortic dissection (TBAD) represents a serious medical emergency with up to a 50% associated 5-year mortality caused by thoracic aorta, dissection-associated aneurysmal (DAA) degeneration, and rupture. Unfortunately, conventional size related diagnostic methods cannot distinguish high-risk DAAs that benefit from surgical intervention from stable DAAs. Our goal is to use DAA stiffness measured with magnetic resonance elastography (MRE) as a biomarker to distinguish high-risk DAAs from stable DAAs. This is a feasibility study using MRE to 1) fabricate human-like geometries TBAD phantoms with different stiffnesses. 2) measure stiffness in TBAD phantoms with rheometry and 3) demonstrate the first successful application of MRE to the thoracic aorta of a human volunteer. Aortic dissection phantoms with heterogenous wall stiffness demonstrated the correlation between MRE-derived stiffness and rheometric measured stiffness. A pilot scan was performed in a healthy volunteer to test the technique's feasibility in the thoracic aorta.\",\"PeriodicalId\":501308,\"journal\":{\"name\":\"bioRxiv - Bioengineering\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.05.611548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.611548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feasibility of Measuring Magnetic Resonance Elastography-derived Stiffness in Human Thoracic Aorta and Aortic Dissection Phantoms
Type-B aortic dissection (TBAD) represents a serious medical emergency with up to a 50% associated 5-year mortality caused by thoracic aorta, dissection-associated aneurysmal (DAA) degeneration, and rupture. Unfortunately, conventional size related diagnostic methods cannot distinguish high-risk DAAs that benefit from surgical intervention from stable DAAs. Our goal is to use DAA stiffness measured with magnetic resonance elastography (MRE) as a biomarker to distinguish high-risk DAAs from stable DAAs. This is a feasibility study using MRE to 1) fabricate human-like geometries TBAD phantoms with different stiffnesses. 2) measure stiffness in TBAD phantoms with rheometry and 3) demonstrate the first successful application of MRE to the thoracic aorta of a human volunteer. Aortic dissection phantoms with heterogenous wall stiffness demonstrated the correlation between MRE-derived stiffness and rheometric measured stiffness. A pilot scan was performed in a healthy volunteer to test the technique's feasibility in the thoracic aorta.