哺乳动物大脑的体内光学清除

Giovanni Talei Franzesi, Ishan Gupta, Ming Hu, Kiryl Piatkveich, Murat Yildirim, Jian-Ping Zhao, Minho Eom, Seungjae Han, Demian Park, Himashi Andaraarachchi, Zhaohan Li, Jesse Greenhagen, Amirul Muhammad Islam, Parth Vashishtha, Zahid Yaqoob, Nikita Pak, Alexander D. Wissner-Gross, Daniel Martin-Alarcon, Jonathan Veinot, Peter T. So, Uwe Kortshagen, Young-Gyu Yoon, Mriganka Sur, Edward S. Boyden
{"title":"哺乳动物大脑的体内光学清除","authors":"Giovanni Talei Franzesi, Ishan Gupta, Ming Hu, Kiryl Piatkveich, Murat Yildirim, Jian-Ping Zhao, Minho Eom, Seungjae Han, Demian Park, Himashi Andaraarachchi, Zhaohan Li, Jesse Greenhagen, Amirul Muhammad Islam, Parth Vashishtha, Zahid Yaqoob, Nikita Pak, Alexander D. Wissner-Gross, Daniel Martin-Alarcon, Jonathan Veinot, Peter T. So, Uwe Kortshagen, Young-Gyu Yoon, Mriganka Sur, Edward S. Boyden","doi":"10.1101/2024.09.05.611421","DOIUrl":null,"url":null,"abstract":"Established methods for imaging the living mammalian brain have, to date, taken optical properties of the tissue as fixed; we here demonstrate that it is possible to modify the optical properties of the brain itself to significantly enhance at-depth imaging while preserving native physiology. Using a small amount of any of several biocompatible materials to raise the refractive index of solutions superfusing the brain prior to imaging, we could increase several-fold the signals from the deepest cells normally visible and, under both one-photon and two-photon imaging, visualize cells previously too dim to see. The enhancement was observed for both anatomical and functional fluorescent reporters across a broad range of emission wavelengths. Importantly, visual tuning properties of cortical neurons in awake mice, and electrophysiological properties of neurons assessed ex vivo, were not altered by this procedure.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vivo Optical Clearing of Mammalian Brain\",\"authors\":\"Giovanni Talei Franzesi, Ishan Gupta, Ming Hu, Kiryl Piatkveich, Murat Yildirim, Jian-Ping Zhao, Minho Eom, Seungjae Han, Demian Park, Himashi Andaraarachchi, Zhaohan Li, Jesse Greenhagen, Amirul Muhammad Islam, Parth Vashishtha, Zahid Yaqoob, Nikita Pak, Alexander D. Wissner-Gross, Daniel Martin-Alarcon, Jonathan Veinot, Peter T. So, Uwe Kortshagen, Young-Gyu Yoon, Mriganka Sur, Edward S. Boyden\",\"doi\":\"10.1101/2024.09.05.611421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Established methods for imaging the living mammalian brain have, to date, taken optical properties of the tissue as fixed; we here demonstrate that it is possible to modify the optical properties of the brain itself to significantly enhance at-depth imaging while preserving native physiology. Using a small amount of any of several biocompatible materials to raise the refractive index of solutions superfusing the brain prior to imaging, we could increase several-fold the signals from the deepest cells normally visible and, under both one-photon and two-photon imaging, visualize cells previously too dim to see. The enhancement was observed for both anatomical and functional fluorescent reporters across a broad range of emission wavelengths. Importantly, visual tuning properties of cortical neurons in awake mice, and electrophysiological properties of neurons assessed ex vivo, were not altered by this procedure.\",\"PeriodicalId\":501308,\"journal\":{\"name\":\"bioRxiv - Bioengineering\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.05.611421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.611421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,对哺乳动物活体大脑成像的既定方法都是将组织的光学特性固定下来;我们在此证明,可以改变大脑本身的光学特性,从而在保留原生生理结构的同时显著增强深度成像。在成像之前,我们使用少量生物相容性材料来提高大脑表面溶液的折射率,就能将通常可见的最深层细胞的信号提高数倍,而且在单光子和双光子成像下,还能观察到以前无法看到的暗淡细胞。在广泛的发射波长范围内,解剖和功能荧光报告都能观察到这种增强。重要的是,清醒小鼠皮层神经元的视觉调谐特性以及体外评估神经元的电生理特性均未因这一过程而改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Vivo Optical Clearing of Mammalian Brain
Established methods for imaging the living mammalian brain have, to date, taken optical properties of the tissue as fixed; we here demonstrate that it is possible to modify the optical properties of the brain itself to significantly enhance at-depth imaging while preserving native physiology. Using a small amount of any of several biocompatible materials to raise the refractive index of solutions superfusing the brain prior to imaging, we could increase several-fold the signals from the deepest cells normally visible and, under both one-photon and two-photon imaging, visualize cells previously too dim to see. The enhancement was observed for both anatomical and functional fluorescent reporters across a broad range of emission wavelengths. Importantly, visual tuning properties of cortical neurons in awake mice, and electrophysiological properties of neurons assessed ex vivo, were not altered by this procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信