{"title":"用于治疗前列腺癌的 PSMA 特异性 CAR 工程巨噬细胞","authors":"Yangli Xu, Duoli Xie, Chunhao Cao, Yue Ju, Xinxin Chen, Lili Guan, Xuelong Li, Luo Zhang, Chao Liang, Xiushan Yin","doi":"10.1101/2024.09.07.611792","DOIUrl":null,"url":null,"abstract":"Chimeric antigen receptor (CAR)-modified macrophages (CAR-Ms) are a promising approach for the treatment of solid tumors due to its high infiltration and immune-regulation activity. Prostate cancer is a typical solid tumor associated with highly immunosuppressive microenvironment. To date, the potential application of CAR-M cell therapy in prostate cancer has been infrequently explored. The prostate-specific membrane antigen (PSMA) functions as a specific biomarker for prostate cancer. In this study, we assessed the antitumor efficacy of PSMA-targeted CAR-Ms in preclinical models. CAR-Ms were engineered to express a PSMA-specific single-chain variable fragment (scFv) and co-stimulatory domains. In vitro data demonstrated specific cytotoxicity of CAR-Ms against PSMA-expressing prostate cancer cells, which was further supported by transcriptome analysis demonstrating the pro-inflammatory phenotypes of CAR-Ms. In vivo studies using xenograft mouse models confirmed significant tumor regression after administration of PSMA-targeted CAR-Ms compared to controls. Histopathological analysis showed infiltration of CAR-Ms into tumor tissues without off-target toxicity. These results highlight the strong antitumor activity and safety of PSMA-targeted CAR-Ms, supporting their potential as a new immunotherapy for prostate cancer.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PSMA-specific CAR-engineered macrophages for therapy of prostate cancer\",\"authors\":\"Yangli Xu, Duoli Xie, Chunhao Cao, Yue Ju, Xinxin Chen, Lili Guan, Xuelong Li, Luo Zhang, Chao Liang, Xiushan Yin\",\"doi\":\"10.1101/2024.09.07.611792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chimeric antigen receptor (CAR)-modified macrophages (CAR-Ms) are a promising approach for the treatment of solid tumors due to its high infiltration and immune-regulation activity. Prostate cancer is a typical solid tumor associated with highly immunosuppressive microenvironment. To date, the potential application of CAR-M cell therapy in prostate cancer has been infrequently explored. The prostate-specific membrane antigen (PSMA) functions as a specific biomarker for prostate cancer. In this study, we assessed the antitumor efficacy of PSMA-targeted CAR-Ms in preclinical models. CAR-Ms were engineered to express a PSMA-specific single-chain variable fragment (scFv) and co-stimulatory domains. In vitro data demonstrated specific cytotoxicity of CAR-Ms against PSMA-expressing prostate cancer cells, which was further supported by transcriptome analysis demonstrating the pro-inflammatory phenotypes of CAR-Ms. In vivo studies using xenograft mouse models confirmed significant tumor regression after administration of PSMA-targeted CAR-Ms compared to controls. Histopathological analysis showed infiltration of CAR-Ms into tumor tissues without off-target toxicity. These results highlight the strong antitumor activity and safety of PSMA-targeted CAR-Ms, supporting their potential as a new immunotherapy for prostate cancer.\",\"PeriodicalId\":501308,\"journal\":{\"name\":\"bioRxiv - Bioengineering\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.07.611792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.07.611792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PSMA-specific CAR-engineered macrophages for therapy of prostate cancer
Chimeric antigen receptor (CAR)-modified macrophages (CAR-Ms) are a promising approach for the treatment of solid tumors due to its high infiltration and immune-regulation activity. Prostate cancer is a typical solid tumor associated with highly immunosuppressive microenvironment. To date, the potential application of CAR-M cell therapy in prostate cancer has been infrequently explored. The prostate-specific membrane antigen (PSMA) functions as a specific biomarker for prostate cancer. In this study, we assessed the antitumor efficacy of PSMA-targeted CAR-Ms in preclinical models. CAR-Ms were engineered to express a PSMA-specific single-chain variable fragment (scFv) and co-stimulatory domains. In vitro data demonstrated specific cytotoxicity of CAR-Ms against PSMA-expressing prostate cancer cells, which was further supported by transcriptome analysis demonstrating the pro-inflammatory phenotypes of CAR-Ms. In vivo studies using xenograft mouse models confirmed significant tumor regression after administration of PSMA-targeted CAR-Ms compared to controls. Histopathological analysis showed infiltration of CAR-Ms into tumor tissues without off-target toxicity. These results highlight the strong antitumor activity and safety of PSMA-targeted CAR-Ms, supporting their potential as a new immunotherapy for prostate cancer.