重正化量子系统中的完备性关系

Fatih Erman, O. Teoman Turgut
{"title":"重正化量子系统中的完备性关系","authors":"Fatih Erman, O. Teoman Turgut","doi":"arxiv-2409.05372","DOIUrl":null,"url":null,"abstract":"In this work, we show that the completeness relation for the eigenvectors,\nwhich is an essential assumption of quantum mechanics, remains true if the\ninitial Hamiltonian, having a discrete spectrum, is modified by a delta\npotential (to be made precise by a renormalization scheme) supported at a point\nin two and three-dimensional compact manifolds or Euclidean spaces. The\nformulation can be easily extended to $N$ center case, and the case where delta\ninteraction is supported on curves in the plane or space.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"472 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Completeness Relation in Renormalized Quantum Systems\",\"authors\":\"Fatih Erman, O. Teoman Turgut\",\"doi\":\"arxiv-2409.05372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we show that the completeness relation for the eigenvectors,\\nwhich is an essential assumption of quantum mechanics, remains true if the\\ninitial Hamiltonian, having a discrete spectrum, is modified by a delta\\npotential (to be made precise by a renormalization scheme) supported at a point\\nin two and three-dimensional compact manifolds or Euclidean spaces. The\\nformulation can be easily extended to $N$ center case, and the case where delta\\ninteraction is supported on curves in the plane or space.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"472 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们证明了如果具有离散谱的初始哈密顿被二维和三维紧凑流形或欧几里得空间中的一个点上支持的德尔势(通过重正化方案使其精确化)所修正,那么作为量子力学基本假设的特征向量的完备性关系仍然是真实的。这个公式可以很容易地扩展到以 $N$ 为中心的情况,以及在平面或空间的曲线上支持三角作用的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Completeness Relation in Renormalized Quantum Systems
In this work, we show that the completeness relation for the eigenvectors, which is an essential assumption of quantum mechanics, remains true if the initial Hamiltonian, having a discrete spectrum, is modified by a delta potential (to be made precise by a renormalization scheme) supported at a point in two and three-dimensional compact manifolds or Euclidean spaces. The formulation can be easily extended to $N$ center case, and the case where delta interaction is supported on curves in the plane or space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信