希塔林塔用代数方法对$4/times 4$ 恒定杨-巴克斯特算子的分类

Somnath Maity, Vivek Kumar Singh, Pramod Padmanabhan, Vladimir Korepin
{"title":"希塔林塔用代数方法对$4/times 4$ 恒定杨-巴克斯特算子的分类","authors":"Somnath Maity, Vivek Kumar Singh, Pramod Padmanabhan, Vladimir Korepin","doi":"arxiv-2409.05375","DOIUrl":null,"url":null,"abstract":"Classifying Yang-Baxter operators is an essential first step in the study of\nthe simulation of integrable quantum systems on quantum computers. One of the\nearliest initiatives was taken by Hietarinta in classifying constant\nYang-Baxter solutions for a two-dimensional local Hilbert space (qubit\nrepresentation). He obtained 11 families of invertible solutions, including the\none generated by the permutation operator. While these methods work well for 4\nby 4 solutions, they become cumbersome for higher dimensional representations.\nIn this work, we overcome this restriction by constructing the constant\nYang-Baxter solutions in a representation independent manner by using\nans\\\"{a}tze from algebraic structures. We use four different algebraic\nstructures that reproduce 10 of the 11 Hietarinta families when the qubit\nrepresentation is chosen. The methods include a set of commuting operators,\nClifford algebras, Temperley-Lieb algebras, and partition algebras. We do not\nobtain the $(2,2)$ Hietarinta class with these methods.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hietarinta's classification of $4\\\\times 4$ constant Yang-Baxter operators using algebraic approach\",\"authors\":\"Somnath Maity, Vivek Kumar Singh, Pramod Padmanabhan, Vladimir Korepin\",\"doi\":\"arxiv-2409.05375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifying Yang-Baxter operators is an essential first step in the study of\\nthe simulation of integrable quantum systems on quantum computers. One of the\\nearliest initiatives was taken by Hietarinta in classifying constant\\nYang-Baxter solutions for a two-dimensional local Hilbert space (qubit\\nrepresentation). He obtained 11 families of invertible solutions, including the\\none generated by the permutation operator. While these methods work well for 4\\nby 4 solutions, they become cumbersome for higher dimensional representations.\\nIn this work, we overcome this restriction by constructing the constant\\nYang-Baxter solutions in a representation independent manner by using\\nans\\\\\\\"{a}tze from algebraic structures. We use four different algebraic\\nstructures that reproduce 10 of the 11 Hietarinta families when the qubit\\nrepresentation is chosen. The methods include a set of commuting operators,\\nClifford algebras, Temperley-Lieb algebras, and partition algebras. We do not\\nobtain the $(2,2)$ Hietarinta class with these methods.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

杨-巴克斯特算子的分类是在量子计算机上模拟可积分量子系统的研究中必不可少的第一步。希塔林塔(Hietarinta)最早对二维局部希尔伯特空间(量子位表示)的杨-巴克斯特常数解进行了分类。他获得了 11 个可逆解系列,包括由置换算子产生的可逆解。在这项工作中,我们克服了这一限制,通过使用代数结构,以一种与表示无关的方式构造了常杨-巴克斯特解。我们使用四种不同的代数结构,在选择量子比特表征时重现了 11 个希塔林塔族中的 10 个。这些方法包括一组换向算子、克利福德代数、Temperley-Lieb 代数和分区代数。我们没有用这些方法得到 $(2,2)$ Hietarinta 类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hietarinta's classification of $4\times 4$ constant Yang-Baxter operators using algebraic approach
Classifying Yang-Baxter operators is an essential first step in the study of the simulation of integrable quantum systems on quantum computers. One of the earliest initiatives was taken by Hietarinta in classifying constant Yang-Baxter solutions for a two-dimensional local Hilbert space (qubit representation). He obtained 11 families of invertible solutions, including the one generated by the permutation operator. While these methods work well for 4 by 4 solutions, they become cumbersome for higher dimensional representations. In this work, we overcome this restriction by constructing the constant Yang-Baxter solutions in a representation independent manner by using ans\"{a}tze from algebraic structures. We use four different algebraic structures that reproduce 10 of the 11 Hietarinta families when the qubit representation is chosen. The methods include a set of commuting operators, Clifford algebras, Temperley-Lieb algebras, and partition algebras. We do not obtain the $(2,2)$ Hietarinta class with these methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信