Claudia García, Martina Magliocca, Nicolas Meunier
{"title":"自发对称破缺下肌动蛋白片段的移动性","authors":"Claudia García, Martina Magliocca, Nicolas Meunier","doi":"arxiv-2409.05762","DOIUrl":null,"url":null,"abstract":"Cell motility is connected to the spontaneous symmetry breaking of a circular\nshape. In https://doi.org/10.1103/PhysRevLett.110.078102, Blanch-Mercader and\nCasademunt perfomed a nonlinear analysis of the minimal model proposed by\nCallan and Jones https://doi.org/10.1103/PhysRevLett.100.258106 and numerically\nconjectured the existence of traveling solutions once that symmetry is broken.\nIn this work, we prove analytically that conjecture by means of nonlinear\nbifurcation techniques.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traveling Motility of Actin Lamellar Fragments Under spontaneous symmetry breaking\",\"authors\":\"Claudia García, Martina Magliocca, Nicolas Meunier\",\"doi\":\"arxiv-2409.05762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell motility is connected to the spontaneous symmetry breaking of a circular\\nshape. In https://doi.org/10.1103/PhysRevLett.110.078102, Blanch-Mercader and\\nCasademunt perfomed a nonlinear analysis of the minimal model proposed by\\nCallan and Jones https://doi.org/10.1103/PhysRevLett.100.258106 and numerically\\nconjectured the existence of traveling solutions once that symmetry is broken.\\nIn this work, we prove analytically that conjecture by means of nonlinear\\nbifurcation techniques.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
细胞运动与圆形的自发对称破缺有关。在 https://doi.org/10.1103/PhysRevLett.110.078102,Blanch-Mercader 和 Casademunt 对 Callan 和 Jones 提出的最小模型进行了非线性分析 https://doi.org/10.1103/PhysRevLett.100.258106,并从数值上猜想,一旦对称性被打破,就会存在行进解。在这项工作中,我们通过非线性分岔技术分析证明了这一猜想。
Traveling Motility of Actin Lamellar Fragments Under spontaneous symmetry breaking
Cell motility is connected to the spontaneous symmetry breaking of a circular
shape. In https://doi.org/10.1103/PhysRevLett.110.078102, Blanch-Mercader and
Casademunt perfomed a nonlinear analysis of the minimal model proposed by
Callan and Jones https://doi.org/10.1103/PhysRevLett.100.258106 and numerically
conjectured the existence of traveling solutions once that symmetry is broken.
In this work, we prove analytically that conjecture by means of nonlinear
bifurcation techniques.