关于带有格鲁申算子的半线性热方程

Geronimo Oliveira, Arlúcio Viana
{"title":"关于带有格鲁申算子的半线性热方程","authors":"Geronimo Oliveira, Arlúcio Viana","doi":"arxiv-2409.06578","DOIUrl":null,"url":null,"abstract":"In this work, we study the heat equation with Grushin's operator. We present\nan expression for its heat kernel and get regularity properties and decay on\n$L^p$ spaces for both heat Kernel and semigroup associated to Grushin's\noperator. Next, we use the results to prove the existence, uniqueness,\ncontinuous dependence and blowup alternative of mild solutions of a nonlinear\nCauchy's problem associated to Grushin's operator.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the semilinear heat equation with the Grushin operator\",\"authors\":\"Geronimo Oliveira, Arlúcio Viana\",\"doi\":\"arxiv-2409.06578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the heat equation with Grushin's operator. We present\\nan expression for its heat kernel and get regularity properties and decay on\\n$L^p$ spaces for both heat Kernel and semigroup associated to Grushin's\\noperator. Next, we use the results to prove the existence, uniqueness,\\ncontinuous dependence and blowup alternative of mild solutions of a nonlinear\\nCauchy's problem associated to Grushin's operator.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了带有格鲁申算子的热方程。我们提出了其热核的表达式,并得到了热核和与格鲁申算子相关的半群在$L^p$空间上的正则特性和衰减。接下来,我们利用这些结果证明了与格鲁申算子相关的非线性考奇问题的温和解的存在性、唯一性、连续依赖性和炸毁替代性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the semilinear heat equation with the Grushin operator
In this work, we study the heat equation with Grushin's operator. We present an expression for its heat kernel and get regularity properties and decay on $L^p$ spaces for both heat Kernel and semigroup associated to Grushin's operator. Next, we use the results to prove the existence, uniqueness, continuous dependence and blowup alternative of mild solutions of a nonlinear Cauchy's problem associated to Grushin's operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信