强拓扑学中的量子芝诺和强阻尼极限

Robert Salzmann
{"title":"强拓扑学中的量子芝诺和强阻尼极限","authors":"Robert Salzmann","doi":"arxiv-2409.06469","DOIUrl":null,"url":null,"abstract":"Frequent applications of a mixing quantum operation to a quantum system slow\ndown its time evolution and eventually drive it into the invariant subspace of\nthe named operation. We prove this phenomenon, the quantum Zeno effect, and its\ncontinuous variant, strong damping, in a unified way for infinite-dimensional\nopen quantum systems, while merely demanding that the respective mixing\nconvergence holds pointwise for all states. Both results are quantitative in\nthe following sense: Given the speed of convergence for the mixing limits, we\ncan derive bounds on the convergence speed for the corresponding quantum Zeno\nand strong damping limits. We apply our results to prove quantum Zeno and\nstrong damping limits for the photon loss channel with an explicit bound on the\nconvergence speed.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Quantum Zeno and Strong Damping Limits in Strong Topology\",\"authors\":\"Robert Salzmann\",\"doi\":\"arxiv-2409.06469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequent applications of a mixing quantum operation to a quantum system slow\\ndown its time evolution and eventually drive it into the invariant subspace of\\nthe named operation. We prove this phenomenon, the quantum Zeno effect, and its\\ncontinuous variant, strong damping, in a unified way for infinite-dimensional\\nopen quantum systems, while merely demanding that the respective mixing\\nconvergence holds pointwise for all states. Both results are quantitative in\\nthe following sense: Given the speed of convergence for the mixing limits, we\\ncan derive bounds on the convergence speed for the corresponding quantum Zeno\\nand strong damping limits. We apply our results to prove quantum Zeno and\\nstrong damping limits for the photon loss channel with an explicit bound on the\\nconvergence speed.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对量子系统频繁应用混合量子操作会减慢其时间演化,并最终将其驱赶到指定操作的不变子空间。我们以统一的方式证明了无限维开放量子系统的这种现象--量子芝诺效应及其连续变体--强阻尼,而仅仅要求各自的混合收敛对所有状态都点对点地成立。这两个结果在以下意义上都是定量的:鉴于混合极限的收敛速度,我们可以推导出相应量子芝诺极限和强阻尼极限的收敛速度边界。我们应用我们的结果证明了光子损耗通道的量子芝诺极限和强阻尼极限,并给出了收敛速度的明确约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative Quantum Zeno and Strong Damping Limits in Strong Topology
Frequent applications of a mixing quantum operation to a quantum system slow down its time evolution and eventually drive it into the invariant subspace of the named operation. We prove this phenomenon, the quantum Zeno effect, and its continuous variant, strong damping, in a unified way for infinite-dimensional open quantum systems, while merely demanding that the respective mixing convergence holds pointwise for all states. Both results are quantitative in the following sense: Given the speed of convergence for the mixing limits, we can derive bounds on the convergence speed for the corresponding quantum Zeno and strong damping limits. We apply our results to prove quantum Zeno and strong damping limits for the photon loss channel with an explicit bound on the convergence speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信