{"title":"费米子高斯测试与卷积非高斯测量","authors":"Nicholas Lyu, Kaifeng Bu","doi":"arxiv-2409.08180","DOIUrl":null,"url":null,"abstract":"We explore the properties of fermionic convolution defined by fermionic\nGaussian unitary. A key finding is the purity invariance of pure Gaussian\nstates under this convolution. Leveraging this property, we propose an\nefficient protocol to test the fermionic Gaussianity of pure states by using 3\ncopies of the input states. Furthermore, we introduce a new family of measures\ncalled ``Non-Gaussian Entropy,'' designed to quantify the fermionic\nnon-Gaussianity of states.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fermionic Gaussian Testing and Non-Gaussian Measures via Convolution\",\"authors\":\"Nicholas Lyu, Kaifeng Bu\",\"doi\":\"arxiv-2409.08180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the properties of fermionic convolution defined by fermionic\\nGaussian unitary. A key finding is the purity invariance of pure Gaussian\\nstates under this convolution. Leveraging this property, we propose an\\nefficient protocol to test the fermionic Gaussianity of pure states by using 3\\ncopies of the input states. Furthermore, we introduce a new family of measures\\ncalled ``Non-Gaussian Entropy,'' designed to quantify the fermionic\\nnon-Gaussianity of states.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fermionic Gaussian Testing and Non-Gaussian Measures via Convolution
We explore the properties of fermionic convolution defined by fermionic
Gaussian unitary. A key finding is the purity invariance of pure Gaussian
states under this convolution. Leveraging this property, we propose an
efficient protocol to test the fermionic Gaussianity of pure states by using 3
copies of the input states. Furthermore, we introduce a new family of measures
called ``Non-Gaussian Entropy,'' designed to quantify the fermionic
non-Gaussianity of states.