多重多项式积分的基础知识

Gleb Aminov, Paolo Arnaudo
{"title":"多重多项式积分的基础知识","authors":"Gleb Aminov, Paolo Arnaudo","doi":"arxiv-2409.06760","DOIUrl":null,"url":null,"abstract":"We introduce a set of special functions called multiple polyexponential\nintegrals, defined as iterated integrals of the exponential integral\n$\\text{Ei}(z)$. These functions arise in certain perturbative expansions of the\nlocal solutions of second-order ODEs around an irregular singularity. In\nparticular, their recursive definition describes the asymptotic behavior of\nthese local solutions. To complement the study of the multiple polyexponential\nintegrals on the entire complex plane, we relate them with two other sets of\nspecial functions - the undressed and dressed multiple polyexponential\nfunctions - which are characterized by their Taylor series expansions around\nthe origin.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"283 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basics of Multiple Polyexponential Integrals\",\"authors\":\"Gleb Aminov, Paolo Arnaudo\",\"doi\":\"arxiv-2409.06760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a set of special functions called multiple polyexponential\\nintegrals, defined as iterated integrals of the exponential integral\\n$\\\\text{Ei}(z)$. These functions arise in certain perturbative expansions of the\\nlocal solutions of second-order ODEs around an irregular singularity. In\\nparticular, their recursive definition describes the asymptotic behavior of\\nthese local solutions. To complement the study of the multiple polyexponential\\nintegrals on the entire complex plane, we relate them with two other sets of\\nspecial functions - the undressed and dressed multiple polyexponential\\nfunctions - which are characterized by their Taylor series expansions around\\nthe origin.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"283 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一组称为多重多指数积分的特殊函数,它们被定义为指数积分$\text{Ei}(z)$的迭代积分。这些函数出现在不规则奇点周围二阶 ODEs 局部解的某些扰动展开中。特别是,它们的递归定义描述了这些局部解的渐近行为。为了补充对整个复平面上多重多指数积分的研究,我们将它们与另外两组特殊函数联系起来,这两组特殊函数分别是未着色多重多指数函数和着色多重多指数函数,它们以围绕原点的泰勒级数展开为特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Basics of Multiple Polyexponential Integrals
We introduce a set of special functions called multiple polyexponential integrals, defined as iterated integrals of the exponential integral $\text{Ei}(z)$. These functions arise in certain perturbative expansions of the local solutions of second-order ODEs around an irregular singularity. In particular, their recursive definition describes the asymptotic behavior of these local solutions. To complement the study of the multiple polyexponential integrals on the entire complex plane, we relate them with two other sets of special functions - the undressed and dressed multiple polyexponential functions - which are characterized by their Taylor series expansions around the origin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信