费米圆周对称运动的对称发生器和量子数

V. B. Mendrot, A. S. de Castro, P. Alberto
{"title":"费米圆周对称运动的对称发生器和量子数","authors":"V. B. Mendrot, A. S. de Castro, P. Alberto","doi":"arxiv-2409.06850","DOIUrl":null,"url":null,"abstract":"The planar dynamics of spin-1/2 quantum relativistic particles is important\nfor several physical systems. In this paper we derive, by a simple method, the\ngenerators for the continuous symmetries of the 3+1 Dirac equation for planar\nmotion, when there is circular symmetry, i.e., the interactions depend only on\nthe radial coordinate. We consider a general set of potentials with different\nLorentz structures. These generators allow for several minimal complete sets of\ncommuting observables and their corresponding quantum numbers. We show how they\ncan be used to label the general eigenspinors for this problem. We also derive\nthe generators of the spin and pseudospin symmetries for this planar Dirac\nproblem, which arise when the vector and scalar potentials have the same\nmagnitude and tensor potential and the space components of the four-vector\npotential are absent. We investigate the associated energy degeneracies and\ncompare them to the known degeneracies in the spherically symmetric 3+1 Dirac\nequation.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry generators and quantum numbers for fermionic circularly symmetric motion\",\"authors\":\"V. B. Mendrot, A. S. de Castro, P. Alberto\",\"doi\":\"arxiv-2409.06850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The planar dynamics of spin-1/2 quantum relativistic particles is important\\nfor several physical systems. In this paper we derive, by a simple method, the\\ngenerators for the continuous symmetries of the 3+1 Dirac equation for planar\\nmotion, when there is circular symmetry, i.e., the interactions depend only on\\nthe radial coordinate. We consider a general set of potentials with different\\nLorentz structures. These generators allow for several minimal complete sets of\\ncommuting observables and their corresponding quantum numbers. We show how they\\ncan be used to label the general eigenspinors for this problem. We also derive\\nthe generators of the spin and pseudospin symmetries for this planar Dirac\\nproblem, which arise when the vector and scalar potentials have the same\\nmagnitude and tensor potential and the space components of the four-vector\\npotential are absent. We investigate the associated energy degeneracies and\\ncompare them to the known degeneracies in the spherically symmetric 3+1 Dirac\\nequation.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自旋-1/2 量子相对性粒子的平面动力学对若干物理系统非常重要。在本文中,我们通过一种简单的方法,推导出了当存在圆对称性(即相互作用只依赖于径向坐标)时,3+1 迪拉克方程的连续对称性平面运动的发生器。我们考虑了具有不同洛伦兹结构的一般势集。这些发生器可以产生几组最小的完整交换观测值及其相应的量子数。我们展示了如何利用它们来标注这个问题的一般特征旋子。我们还推导出了这个平面狄拉克问题的自旋和伪自旋对称性发生器,当矢量势和标量势具有相同的磁性和张量势,并且不存在四矢量势的空间分量时,就会产生这些发生器。我们研究了相关的能量退行性,并将它们与已知的球对称 3+1 Diracequation 中的退行性进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry generators and quantum numbers for fermionic circularly symmetric motion
The planar dynamics of spin-1/2 quantum relativistic particles is important for several physical systems. In this paper we derive, by a simple method, the generators for the continuous symmetries of the 3+1 Dirac equation for planar motion, when there is circular symmetry, i.e., the interactions depend only on the radial coordinate. We consider a general set of potentials with different Lorentz structures. These generators allow for several minimal complete sets of commuting observables and their corresponding quantum numbers. We show how they can be used to label the general eigenspinors for this problem. We also derive the generators of the spin and pseudospin symmetries for this planar Dirac problem, which arise when the vector and scalar potentials have the same magnitude and tensor potential and the space components of the four-vector potential are absent. We investigate the associated energy degeneracies and compare them to the known degeneracies in the spherically symmetric 3+1 Dirac equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信