{"title":"萨克德夫-叶-基塔耶夫模型特征状态的最大纠缠偏差","authors":"Yichen Huang, Yi Tan, Norman Y. Yao","doi":"arxiv-2409.07043","DOIUrl":null,"url":null,"abstract":"We consider mid-spectrum eigenstates of the Sachdev-Ye-Kiteav (SYK) model. We\nprove that for subsystems whose size is a constant fraction of the system size,\nthe entanglement entropy deviates from the maximum entropy by at least a\npositive constant. This result highlights the difference between the\nentanglement entropy of mid-spectrum eigenstates of the SYK model and that of\nrandom states.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"419 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deviations from maximal entanglement for eigenstates of the Sachdev-Ye-Kitaev model\",\"authors\":\"Yichen Huang, Yi Tan, Norman Y. Yao\",\"doi\":\"arxiv-2409.07043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider mid-spectrum eigenstates of the Sachdev-Ye-Kiteav (SYK) model. We\\nprove that for subsystems whose size is a constant fraction of the system size,\\nthe entanglement entropy deviates from the maximum entropy by at least a\\npositive constant. This result highlights the difference between the\\nentanglement entropy of mid-spectrum eigenstates of the SYK model and that of\\nrandom states.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"419 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deviations from maximal entanglement for eigenstates of the Sachdev-Ye-Kitaev model
We consider mid-spectrum eigenstates of the Sachdev-Ye-Kiteav (SYK) model. We
prove that for subsystems whose size is a constant fraction of the system size,
the entanglement entropy deviates from the maximum entropy by at least a
positive constant. This result highlights the difference between the
entanglement entropy of mid-spectrum eigenstates of the SYK model and that of
random states.