在 Bifrost 太阳大气 MHD 代码中实施热传导能量传递模型

George Cherry, Boris Gudiksen, Mikolaj Szydlarski
{"title":"在 Bifrost 太阳大气 MHD 代码中实施热传导能量传递模型","authors":"George Cherry, Boris Gudiksen, Mikolaj Szydlarski","doi":"arxiv-2409.07074","DOIUrl":null,"url":null,"abstract":"Context: Thermal conductivity provides important contributions to the energy\nevolution of the upper solar atmosphere, behaving as a non-linear\nconcentration-dependent diffusion equation. Recently, different methods have\nbeen offered as best-fit solutions to these problems in specific situations,\nbut their effectiveness and limitations are rarely discussed. Aims. We\nrigorously test the different implementations of solving the conductivity flux,\nin the massively-parallel magnetohydrodynamics code, Bifrost, with the aim of\nspecifying the best scenarios for the use of each method. Methods: We compare\nthe differences and limitations of explicit versus implicit methods, and\nanalyse the convergence of a hyperbolic approximation. Among the tests, we use\na newly derived 1st-order self-similar approximation to compare the efficacy of\neach method analytically in a 1D pure-thermal test scenario. Results: We find\nthat although the hyperbolic approximation proves the most accurate and the\nfastest to compute in long-running simulations, there is no optimal method to\ncalculate the mid-term conductivity with both accuracy and efficiency. We also\nfind that the solution of this approximation is sensitive to the initial\nconditions, and can lead to faster convergence if used correctly.\nHyper-diffusivity is particularly useful in aiding the methods to perform\noptimally. Conclusions: We discuss recommendations for the use of each method\nwithin more complex simulations, whilst acknowledging the areas of opportunity\nfor new methods to be developed.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of thermal conduction energy transfer models in the Bifrost Solar atmosphere MHD code\",\"authors\":\"George Cherry, Boris Gudiksen, Mikolaj Szydlarski\",\"doi\":\"arxiv-2409.07074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: Thermal conductivity provides important contributions to the energy\\nevolution of the upper solar atmosphere, behaving as a non-linear\\nconcentration-dependent diffusion equation. Recently, different methods have\\nbeen offered as best-fit solutions to these problems in specific situations,\\nbut their effectiveness and limitations are rarely discussed. Aims. We\\nrigorously test the different implementations of solving the conductivity flux,\\nin the massively-parallel magnetohydrodynamics code, Bifrost, with the aim of\\nspecifying the best scenarios for the use of each method. Methods: We compare\\nthe differences and limitations of explicit versus implicit methods, and\\nanalyse the convergence of a hyperbolic approximation. Among the tests, we use\\na newly derived 1st-order self-similar approximation to compare the efficacy of\\neach method analytically in a 1D pure-thermal test scenario. Results: We find\\nthat although the hyperbolic approximation proves the most accurate and the\\nfastest to compute in long-running simulations, there is no optimal method to\\ncalculate the mid-term conductivity with both accuracy and efficiency. We also\\nfind that the solution of this approximation is sensitive to the initial\\nconditions, and can lead to faster convergence if used correctly.\\nHyper-diffusivity is particularly useful in aiding the methods to perform\\noptimally. Conclusions: We discuss recommendations for the use of each method\\nwithin more complex simulations, whilst acknowledging the areas of opportunity\\nfor new methods to be developed.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:热导率对太阳高层大气的能量演变有重要贡献,表现为非线性浓度相关扩散方程。最近,人们提出了不同的方法,作为在特定情况下解决这些问题的最佳方案,但很少有人讨论这些方法的有效性和局限性。我们的目标是在大规模并行磁流体动力学代码 Bifrost 中测试求解传导通量的不同实现方法,以确定使用每种方法的最佳方案。方法:我们比较了显式方法和隐式方法的区别和局限性,并分析了双曲近似方法的收敛性。在测试中,我们使用新推导出的一阶自相似近似方法,在一维纯热测试场景中分析比较了每种方法的功效。结果:我们发现,尽管双曲近似在长期模拟中被证明是最准确和最快速的计算方法,但在计算中期电导率的准确性和效率方面却没有最佳方法。我们还发现,这种近似方法的求解对初始条件很敏感,如果使用得当,可以加快收敛速度。结论:我们讨论了在更复杂的模拟中使用每种方法的建议,同时也承认有机会开发新方法的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of thermal conduction energy transfer models in the Bifrost Solar atmosphere MHD code
Context: Thermal conductivity provides important contributions to the energy evolution of the upper solar atmosphere, behaving as a non-linear concentration-dependent diffusion equation. Recently, different methods have been offered as best-fit solutions to these problems in specific situations, but their effectiveness and limitations are rarely discussed. Aims. We rigorously test the different implementations of solving the conductivity flux, in the massively-parallel magnetohydrodynamics code, Bifrost, with the aim of specifying the best scenarios for the use of each method. Methods: We compare the differences and limitations of explicit versus implicit methods, and analyse the convergence of a hyperbolic approximation. Among the tests, we use a newly derived 1st-order self-similar approximation to compare the efficacy of each method analytically in a 1D pure-thermal test scenario. Results: We find that although the hyperbolic approximation proves the most accurate and the fastest to compute in long-running simulations, there is no optimal method to calculate the mid-term conductivity with both accuracy and efficiency. We also find that the solution of this approximation is sensitive to the initial conditions, and can lead to faster convergence if used correctly. Hyper-diffusivity is particularly useful in aiding the methods to perform optimally. Conclusions: We discuss recommendations for the use of each method within more complex simulations, whilst acknowledging the areas of opportunity for new methods to be developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信