单量子系统中的重定标变换和格罗内狄克约束形式主义

A. Vourdas
{"title":"单量子系统中的重定标变换和格罗内狄克约束形式主义","authors":"A. Vourdas","doi":"arxiv-2409.07270","DOIUrl":null,"url":null,"abstract":"The Grothedieck bound formalism is studied using `rescaling transformations',\nin the context of a single quantum system. The rescaling transformations\nenlarge the set of unitary transformations (which apply to isolated systems),\nwith transformations that change not only the phase but also the absolute value\nof the wavefunction, and can be linked to irreversible phenomena (e.g., quantum\ntunnelling, damping and amplification, etc). A special case of rescaling\ntransformations are the dequantisation transformations, which map a Hilbert\nspace formalism into a formalism of scalars. The Grothendieck formalism\nconsiders a `classical' quadratic form ${\\cal C}(\\theta)$ which takes values\nless than $1$, and the corresponding `quantum' quadratic form ${\\cal\nQ}(\\theta)$ which takes values greater than $1$, up to the complex Grothendieck\nconstant $k_G$. It is shown that ${\\cal Q}(\\theta)$ can be expressed as the\ntrace of the product of $\\theta$ with two rescaling matrices, and ${\\cal\nC}(\\theta)$ can be expressed as the trace of the product of $\\theta$ with two\ndequantisation matrices. Values of ${\\cal Q}(\\theta)$ in the `ultra-quantum'\nregion $(1,k_G)$ are very important, because this region is classically\nforbidden (${\\cal C}(\\theta)$ cannot take values in it). An example with ${\\cal\nQ}(\\theta)\\in (1,k_G)$ is given, which is related to phenomena where\nclassically isolated by high potentials regions of space, communicate through\nquantum tunnelling. Other examples show that `ultra-quantumness' according to\nthe Grothendieck formalism (${\\cal Q}(\\theta)\\in (1,k_G)$), is different from\nquantumness according to other criteria (like quantum interference or the\nuncertainty principle).","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rescaling transformations and the Grothendieck bound formalism in a single quantum system\",\"authors\":\"A. Vourdas\",\"doi\":\"arxiv-2409.07270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Grothedieck bound formalism is studied using `rescaling transformations',\\nin the context of a single quantum system. The rescaling transformations\\nenlarge the set of unitary transformations (which apply to isolated systems),\\nwith transformations that change not only the phase but also the absolute value\\nof the wavefunction, and can be linked to irreversible phenomena (e.g., quantum\\ntunnelling, damping and amplification, etc). A special case of rescaling\\ntransformations are the dequantisation transformations, which map a Hilbert\\nspace formalism into a formalism of scalars. The Grothendieck formalism\\nconsiders a `classical' quadratic form ${\\\\cal C}(\\\\theta)$ which takes values\\nless than $1$, and the corresponding `quantum' quadratic form ${\\\\cal\\nQ}(\\\\theta)$ which takes values greater than $1$, up to the complex Grothendieck\\nconstant $k_G$. It is shown that ${\\\\cal Q}(\\\\theta)$ can be expressed as the\\ntrace of the product of $\\\\theta$ with two rescaling matrices, and ${\\\\cal\\nC}(\\\\theta)$ can be expressed as the trace of the product of $\\\\theta$ with two\\ndequantisation matrices. Values of ${\\\\cal Q}(\\\\theta)$ in the `ultra-quantum'\\nregion $(1,k_G)$ are very important, because this region is classically\\nforbidden (${\\\\cal C}(\\\\theta)$ cannot take values in it). An example with ${\\\\cal\\nQ}(\\\\theta)\\\\in (1,k_G)$ is given, which is related to phenomena where\\nclassically isolated by high potentials regions of space, communicate through\\nquantum tunnelling. Other examples show that `ultra-quantumness' according to\\nthe Grothendieck formalism (${\\\\cal Q}(\\\\theta)\\\\in (1,k_G)$), is different from\\nquantumness according to other criteria (like quantum interference or the\\nuncertainty principle).\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在单个量子系统的背景下,使用 "缩放变换 "研究了格罗泰克约束形式主义。重定标变换扩大了单元变换(适用于孤立系统)的集合,不仅改变了相位,还改变了波函数的绝对值,并可与不可逆现象(如量子隧穿、阻尼和放大等)联系起来。去量化变换是重定标变换的一个特例,它将希尔贝兹空间形式主义映射为标量形式主义。格罗thendieck形式主义认为 "经典 "二次形式${\cal C}(\theta)$的取值小于1美元,而相应的 "量子 "二次形式${\calQ}(\theta)$的取值大于1美元,直到复格罗thendieck常数$k_G$。研究表明,${\cal Q}(\theta)$可以表示为$\theta$与两个重定标矩阵的乘积的轨迹,而${\calC}(\theta)$可以表示为$\theta$与两个量化矩阵的乘积的轨迹。${\cal Q}(\theta)$在 "超量子 "区域$(1,k_G)$中的值非常重要,因为这个区域在经典上是被禁止的(${\cal C}(\theta)$ 不能在其中取值)。给出了一个 ${\calQ}(\theta)/in (1,k_G)$ 的例子,它与空间中被高电位经典隔离的区域通过量子隧道进行交流的现象有关。其他例子表明,根据格罗登第克形式主义的 "超量子性"(${\cal Q}(\theta)\in (1,k_G)$),与根据其他标准(如量子干涉或不确定性原理)的量子性是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rescaling transformations and the Grothendieck bound formalism in a single quantum system
The Grothedieck bound formalism is studied using `rescaling transformations', in the context of a single quantum system. The rescaling transformations enlarge the set of unitary transformations (which apply to isolated systems), with transformations that change not only the phase but also the absolute value of the wavefunction, and can be linked to irreversible phenomena (e.g., quantum tunnelling, damping and amplification, etc). A special case of rescaling transformations are the dequantisation transformations, which map a Hilbert space formalism into a formalism of scalars. The Grothendieck formalism considers a `classical' quadratic form ${\cal C}(\theta)$ which takes values less than $1$, and the corresponding `quantum' quadratic form ${\cal Q}(\theta)$ which takes values greater than $1$, up to the complex Grothendieck constant $k_G$. It is shown that ${\cal Q}(\theta)$ can be expressed as the trace of the product of $\theta$ with two rescaling matrices, and ${\cal C}(\theta)$ can be expressed as the trace of the product of $\theta$ with two dequantisation matrices. Values of ${\cal Q}(\theta)$ in the `ultra-quantum' region $(1,k_G)$ are very important, because this region is classically forbidden (${\cal C}(\theta)$ cannot take values in it). An example with ${\cal Q}(\theta)\in (1,k_G)$ is given, which is related to phenomena where classically isolated by high potentials regions of space, communicate through quantum tunnelling. Other examples show that `ultra-quantumness' according to the Grothendieck formalism (${\cal Q}(\theta)\in (1,k_G)$), is different from quantumness according to other criteria (like quantum interference or the uncertainty principle).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信