{"title":"G-预期下稳健定价内核的长期分解","authors":"Jaehyun Kim, Hyungbin Park","doi":"arxiv-2409.00535","DOIUrl":null,"url":null,"abstract":"This study develops a BSDE method for the long-term decomposition of pricing\nkernels under the G-expectation framework. We establish the existence,\nuniqueness, and regularity of solutions to three types of quadratic G-BSDEs:\nfinite-horizon G-BSDEs, infinite-horizon G-BSDEs, and ergodic G-BSDEs.\nMoreover, we explore the Feynman--Kac formula associated with these three types\nof quadratic G-BSDEs. Using these results, a pricing kernel is uniquely\ndecomposed into four components: an exponential discounting component, a\ntransitory component, a symmetric G-martingale, and a decreasing component that\ncaptures the volatility uncertainty of the G-Brownian motion. Furthermore,\nthese components are represented through a solution to a PDE. This study\nextends previous findings obtained under a single fixed probability framework\nto the G-expectation context.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term decomposition of robust pricing kernels under G-expectation\",\"authors\":\"Jaehyun Kim, Hyungbin Park\",\"doi\":\"arxiv-2409.00535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study develops a BSDE method for the long-term decomposition of pricing\\nkernels under the G-expectation framework. We establish the existence,\\nuniqueness, and regularity of solutions to three types of quadratic G-BSDEs:\\nfinite-horizon G-BSDEs, infinite-horizon G-BSDEs, and ergodic G-BSDEs.\\nMoreover, we explore the Feynman--Kac formula associated with these three types\\nof quadratic G-BSDEs. Using these results, a pricing kernel is uniquely\\ndecomposed into four components: an exponential discounting component, a\\ntransitory component, a symmetric G-martingale, and a decreasing component that\\ncaptures the volatility uncertainty of the G-Brownian motion. Furthermore,\\nthese components are represented through a solution to a PDE. This study\\nextends previous findings obtained under a single fixed probability framework\\nto the G-expectation context.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究开发了一种在 G 期望框架下长期分解定价核的 BSDE 方法。我们建立了三类二次 G-BSDEs 解的存在性、唯一性和正则性:有限视距 G-BSDEs、无限视距 G-BSDEs 和遍历 G-BSDEs。利用这些结果,定价内核可以唯一地分解为四个部分:指数贴现部分、过渡部分、对称 G-Martingale,以及捕捉 G-Brownian 运动波动不确定性的递减部分。此外,这些分量是通过一个 PDE 的解来表示的。这项研究将之前在单一固定概率框架下获得的发现扩展到了 G 期望背景下。
Long-term decomposition of robust pricing kernels under G-expectation
This study develops a BSDE method for the long-term decomposition of pricing
kernels under the G-expectation framework. We establish the existence,
uniqueness, and regularity of solutions to three types of quadratic G-BSDEs:
finite-horizon G-BSDEs, infinite-horizon G-BSDEs, and ergodic G-BSDEs.
Moreover, we explore the Feynman--Kac formula associated with these three types
of quadratic G-BSDEs. Using these results, a pricing kernel is uniquely
decomposed into four components: an exponential discounting component, a
transitory component, a symmetric G-martingale, and a decreasing component that
captures the volatility uncertainty of the G-Brownian motion. Furthermore,
these components are represented through a solution to a PDE. This study
extends previous findings obtained under a single fixed probability framework
to the G-expectation context.