具有弱耦合的两个振子的哈密顿的 $SU(1,1)/times SU(2)$ 方法和曼德尔参数

J. C. Vega, D. Ojeda-Guillén, R. D. Mota
{"title":"具有弱耦合的两个振子的哈密顿的 $SU(1,1)/times SU(2)$ 方法和曼德尔参数","authors":"J. C. Vega, D. Ojeda-Guillén, R. D. Mota","doi":"arxiv-2409.08179","DOIUrl":null,"url":null,"abstract":"We study the Hamiltonian of two isotropic oscillators with weak coupling from\nan algebraic approach. We write the Hamiltonian of this problem in terms of the\nboson generators of the $SU(1,1)$ and $SU(2)$ groups. This allows us to apply\ntwo tilting transformations based on both group similarity transformations to\nobtain its energy spectrum and eigenfunctions. Then, we obtain the Mandel\n$Q-$parameter of the photon numbers $n_a$ and $n_b$. It is important to note\nthat in our procedure we consider the case of weak coupling.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"142 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$SU(1,1)\\\\times SU(2)$ approach and the Mandel parameter to the Hamiltonian of two oscillators with weak coupling\",\"authors\":\"J. C. Vega, D. Ojeda-Guillén, R. D. Mota\",\"doi\":\"arxiv-2409.08179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Hamiltonian of two isotropic oscillators with weak coupling from\\nan algebraic approach. We write the Hamiltonian of this problem in terms of the\\nboson generators of the $SU(1,1)$ and $SU(2)$ groups. This allows us to apply\\ntwo tilting transformations based on both group similarity transformations to\\nobtain its energy spectrum and eigenfunctions. Then, we obtain the Mandel\\n$Q-$parameter of the photon numbers $n_a$ and $n_b$. It is important to note\\nthat in our procedure we consider the case of weak coupling.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用代数方法研究了具有弱耦合的两个各向同性振子的哈密顿。我们用$SU(1,1)$和$SU(2)$组的玻色子发生器来写这个问题的哈密顿。这样,我们就可以在这两个基团相似变换的基础上进行两次倾斜变换,从而得到它的能谱和特征函数。然后,我们就得到了光子数 $n_a$ 和 $n_b$ 的曼德尔$Q-$参数。需要注意的是,在我们的程序中,我们考虑的是弱耦合的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$SU(1,1)\times SU(2)$ approach and the Mandel parameter to the Hamiltonian of two oscillators with weak coupling
We study the Hamiltonian of two isotropic oscillators with weak coupling from an algebraic approach. We write the Hamiltonian of this problem in terms of the boson generators of the $SU(1,1)$ and $SU(2)$ groups. This allows us to apply two tilting transformations based on both group similarity transformations to obtain its energy spectrum and eigenfunctions. Then, we obtain the Mandel $Q-$parameter of the photon numbers $n_a$ and $n_b$. It is important to note that in our procedure we consider the case of weak coupling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信