均质空间上的量子参照系

Jan Głowacki
{"title":"均质空间上的量子参照系","authors":"Jan Głowacki","doi":"arxiv-2409.07231","DOIUrl":null,"url":null,"abstract":"This paper initiates a systematic study of operators arising as integrals of\noperator-valued functions with respect to positive operator-valued measures and\nutilizes these tools to provide relativization maps (Yen) for quantum reference\nframes (QRFs) defined on general homogeneous spaces. Properties of\noperator-valued integration are first studied and then employed to define\ngeneral relativization maps and show their properties. The relativization maps\npresented here are defined for QRFs (systems of covariance) based on arbitrary\nhomogeneous spaces of locally compact second countable topological groups and\nare shown to be contracting quantum channels, injective for localizable (norm-1\nproperty) frames and multiplicative for the sharp ones (PVMs), extending the\nexisting results.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Reference Frames on Homogeneous Spaces\",\"authors\":\"Jan Głowacki\",\"doi\":\"arxiv-2409.07231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper initiates a systematic study of operators arising as integrals of\\noperator-valued functions with respect to positive operator-valued measures and\\nutilizes these tools to provide relativization maps (Yen) for quantum reference\\nframes (QRFs) defined on general homogeneous spaces. Properties of\\noperator-valued integration are first studied and then employed to define\\ngeneral relativization maps and show their properties. The relativization maps\\npresented here are defined for QRFs (systems of covariance) based on arbitrary\\nhomogeneous spaces of locally compact second countable topological groups and\\nare shown to be contracting quantum channels, injective for localizable (norm-1\\nproperty) frames and multiplicative for the sharp ones (PVMs), extending the\\nexisting results.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先系统地研究了相对于正算子值量度的算子值函数积分所产生的算子,并利用这些工具为定义在一般均质空间上的量子参考框架(QRF)提供了相对化映射(Yen)。首先研究了算子值积分的性质,然后利用这些性质定义了一般相对化映射,并展示了它们的性质。这里介绍的相对化映射是为基于局部紧凑第二可数拓扑群的任意同质空间的 QRFs(协方差系统)定义的,并证明它们是收缩量子通道,对于可局部化(规范-1 性质)框架是注入式的,而对于尖锐框架(PVMs)是乘法式的,从而扩展了已有的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Reference Frames on Homogeneous Spaces
This paper initiates a systematic study of operators arising as integrals of operator-valued functions with respect to positive operator-valued measures and utilizes these tools to provide relativization maps (Yen) for quantum reference frames (QRFs) defined on general homogeneous spaces. Properties of operator-valued integration are first studied and then employed to define general relativization maps and show their properties. The relativization maps presented here are defined for QRFs (systems of covariance) based on arbitrary homogeneous spaces of locally compact second countable topological groups and are shown to be contracting quantum channels, injective for localizable (norm-1 property) frames and multiplicative for the sharp ones (PVMs), extending the existing results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信