通过密码学构造展示计算逻辑公式的紧凑 QUBO 编码

Gregory Morse, Tamás Kozsik, Oskar Mencer, Peter Rakyta
{"title":"通过密码学构造展示计算逻辑公式的紧凑 QUBO 编码","authors":"Gregory Morse, Tamás Kozsik, Oskar Mencer, Peter Rakyta","doi":"arxiv-2409.07501","DOIUrl":null,"url":null,"abstract":"We aim to advance the state-of-the-art in Quadratic Unconstrained Binary\nOptimization formulation with a focus on cryptography algorithms. As the\nminimal QUBO encoding of the linear constraints of optimization problems\nemerges as the solution of integer linear programming (ILP) problems, by\nsolving special boolean logic formulas (like ANF and DNF) for their integer\ncoefficients it is straightforward to handle any normal form, or any\nsubstitution for multi-input AND, OR or XOR operations in a QUBO form. To\nshowcase the efficiency of the proposed approach we considered the most\nwidespread cryptography algorithms including AES-128/192/256, MD5, SHA1 and\nSHA256. For each of these, we achieved QUBO instances reduced by thousands of\nlogical variables compared to previously published results, while keeping the\nQUBO matrix sparse and the magnitude of the coefficients low. In the particular\ncase of AES-256 cryptography function we obtained more than 8x reduction in\nvariable count compared to previous results. The demonstrated reduction in QUBO\nsizes notably increases the vulnerability of cryptography algorithms against\nfuture quantum annealers, capable of embedding around $30$ thousands of logical\nvariables.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A compact QUBO encoding of computational logic formulae demonstrated on cryptography constructions\",\"authors\":\"Gregory Morse, Tamás Kozsik, Oskar Mencer, Peter Rakyta\",\"doi\":\"arxiv-2409.07501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to advance the state-of-the-art in Quadratic Unconstrained Binary\\nOptimization formulation with a focus on cryptography algorithms. As the\\nminimal QUBO encoding of the linear constraints of optimization problems\\nemerges as the solution of integer linear programming (ILP) problems, by\\nsolving special boolean logic formulas (like ANF and DNF) for their integer\\ncoefficients it is straightforward to handle any normal form, or any\\nsubstitution for multi-input AND, OR or XOR operations in a QUBO form. To\\nshowcase the efficiency of the proposed approach we considered the most\\nwidespread cryptography algorithms including AES-128/192/256, MD5, SHA1 and\\nSHA256. For each of these, we achieved QUBO instances reduced by thousands of\\nlogical variables compared to previously published results, while keeping the\\nQUBO matrix sparse and the magnitude of the coefficients low. In the particular\\ncase of AES-256 cryptography function we obtained more than 8x reduction in\\nvariable count compared to previous results. The demonstrated reduction in QUBO\\nsizes notably increases the vulnerability of cryptography algorithms against\\nfuture quantum annealers, capable of embedding around $30$ thousands of logical\\nvariables.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的目标是以密码学算法为重点,推进二次无约束二进制优化表述的最新发展。由于优化问题的线性约束的最小 QUBO 编码是作为整数线性规划(ILP)问题的解决方案出现的,通过解决其整数系数的特殊布尔逻辑公式(如 ANF 和 DNF),可以直接处理任何正则表达式,或以 QUBO 形式处理多输入 AND、OR 或 XOR 操作的任何替换。为了展示所提方法的效率,我们考虑了最常见的加密算法,包括 AES-128/192/256、MD5、SHA1 和 SHA256。与之前公布的结果相比,我们为每种算法实现的 QUBO 实例都减少了数千个逻辑变量,同时保持了 QUBO 矩阵的稀疏性和系数的低幅度。在 AES-256 密码学函数的特殊情况下,与以前的结果相比,我们的不变量数量减少了 8 倍多。所证明的 QUBO 大小的减少显著增加了加密算法在未来量子退火器面前的脆弱性,而量子退火器能够嵌入大约 30 美元的数千个逻辑变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A compact QUBO encoding of computational logic formulae demonstrated on cryptography constructions
We aim to advance the state-of-the-art in Quadratic Unconstrained Binary Optimization formulation with a focus on cryptography algorithms. As the minimal QUBO encoding of the linear constraints of optimization problems emerges as the solution of integer linear programming (ILP) problems, by solving special boolean logic formulas (like ANF and DNF) for their integer coefficients it is straightforward to handle any normal form, or any substitution for multi-input AND, OR or XOR operations in a QUBO form. To showcase the efficiency of the proposed approach we considered the most widespread cryptography algorithms including AES-128/192/256, MD5, SHA1 and SHA256. For each of these, we achieved QUBO instances reduced by thousands of logical variables compared to previously published results, while keeping the QUBO matrix sparse and the magnitude of the coefficients low. In the particular case of AES-256 cryptography function we obtained more than 8x reduction in variable count compared to previous results. The demonstrated reduction in QUBO sizes notably increases the vulnerability of cryptography algorithms against future quantum annealers, capable of embedding around $30$ thousands of logical variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信