关于复数李群 $ (F_{4,R})^C, (E_{6,R})^C, (E_{7,R})^C ,(E_{8,R})^C$ 和那些紧凑实数形式 $F_{4,R},E_{6,R},E_{7,R},E_{8,R}$ 的实数化

Toshikazu Miyashita
{"title":"关于复数李群 $ (F_{4,R})^C, (E_{6,R})^C, (E_{7,R})^C ,(E_{8,R})^C$ 和那些紧凑实数形式 $F_{4,R},E_{6,R},E_{7,R},E_{8,R}$ 的实数化","authors":"Toshikazu Miyashita","doi":"arxiv-2409.07760","DOIUrl":null,"url":null,"abstract":"In order to define the complex exceptional Lie groups $ {F_4}^C, {E_6}^C,\n{E_7}^C, {E_8}^C $ and these compact real forms $ F_4,E_6,E_7,E_8 $, we usually\nuse the Cayley algebra $ \\mathfrak{C} $. In the present article, we consider\nreplacing the Cayley algebra $ \\mathfrak{C} $ with the field of real numbers\n$\\mathbb R$ in the definition of the groups above, and these groups are denoted\nas in title above. Our aim is to determine the structure of these groups. We\ncall realization to determine the structure of the groups.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"283 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On realizations of the complex Lie groups $ (F_{4,R})^C, (E_{6,R})^C, (E_{7,R})^C ,(E_{8,R})^C$ and those compact real forms $F_{4,R},E_{6,R},E_{7,R},E_{8,R}$\",\"authors\":\"Toshikazu Miyashita\",\"doi\":\"arxiv-2409.07760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to define the complex exceptional Lie groups $ {F_4}^C, {E_6}^C,\\n{E_7}^C, {E_8}^C $ and these compact real forms $ F_4,E_6,E_7,E_8 $, we usually\\nuse the Cayley algebra $ \\\\mathfrak{C} $. In the present article, we consider\\nreplacing the Cayley algebra $ \\\\mathfrak{C} $ with the field of real numbers\\n$\\\\mathbb R$ in the definition of the groups above, and these groups are denoted\\nas in title above. Our aim is to determine the structure of these groups. We\\ncall realization to determine the structure of the groups.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"283 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了定义复例外李群 ${F_4}^C, {E_6}^C,{E_7}^C, {E_8}^C $ 以及这些紧凑实形式 $F_4,E_6,E_7,E_8$,我们通常使用 Cayley 代数 $\mathfrak{C} $。在本文中,我们考虑在上述群的定义中用实数域$\mathbb R$来代替 Cayley 代数$\mathfrak{C}$,这些群的名称如上。我们的目的是确定这些群的结构。我们称实现为确定群的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On realizations of the complex Lie groups $ (F_{4,R})^C, (E_{6,R})^C, (E_{7,R})^C ,(E_{8,R})^C$ and those compact real forms $F_{4,R},E_{6,R},E_{7,R},E_{8,R}$
In order to define the complex exceptional Lie groups $ {F_4}^C, {E_6}^C, {E_7}^C, {E_8}^C $ and these compact real forms $ F_4,E_6,E_7,E_8 $, we usually use the Cayley algebra $ \mathfrak{C} $. In the present article, we consider replacing the Cayley algebra $ \mathfrak{C} $ with the field of real numbers $\mathbb R$ in the definition of the groups above, and these groups are denoted as in title above. Our aim is to determine the structure of these groups. We call realization to determine the structure of the groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信