具有奇异势和奇异数据的波方程的插值散射

Tran Thi Ngoc, Pham Truong Xuan
{"title":"具有奇异势和奇异数据的波方程的插值散射","authors":"Tran Thi Ngoc, Pham Truong Xuan","doi":"arxiv-2409.07867","DOIUrl":null,"url":null,"abstract":"In this paper we investigate a construction of scattering for wave-type\nequations with singular potentials on the whole space $\\mathbb{R}^n$ in a\nframework of weak-$L^p$ spaces. First, we use an Yamazaki-type estimate for\nwave groups on Lorentz spaces and fixed point arguments to prove the global\nwell-posedness for wave-type equations on weak-$L^p$ spaces. Then, we provide a\ncorresponding scattering results in such singular framework. Finally, we use\nalso the dispersive estimates to establish the polynomial stability and improve\nthe decay of scattering.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpolation scattering for wave equations with singular potentials and singular data\",\"authors\":\"Tran Thi Ngoc, Pham Truong Xuan\",\"doi\":\"arxiv-2409.07867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate a construction of scattering for wave-type\\nequations with singular potentials on the whole space $\\\\mathbb{R}^n$ in a\\nframework of weak-$L^p$ spaces. First, we use an Yamazaki-type estimate for\\nwave groups on Lorentz spaces and fixed point arguments to prove the global\\nwell-posedness for wave-type equations on weak-$L^p$ spaces. Then, we provide a\\ncorresponding scattering results in such singular framework. Finally, we use\\nalso the dispersive estimates to establish the polynomial stability and improve\\nthe decay of scattering.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在弱-$L^p$空间的框架内研究了在整个空间$\mathbb{R}^n$上具有奇异势的波型方程的散射构造。首先,我们利用洛伦兹空间上波群的山崎估计和定点论证来证明弱$L^p$空间上波型方程的全局可求性。然后,我们在这种奇异框架中提供了相应的散射结果。最后,我们还利用分散估计建立了多项式稳定性并改善了散射衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpolation scattering for wave equations with singular potentials and singular data
In this paper we investigate a construction of scattering for wave-type equations with singular potentials on the whole space $\mathbb{R}^n$ in a framework of weak-$L^p$ spaces. First, we use an Yamazaki-type estimate for wave groups on Lorentz spaces and fixed point arguments to prove the global well-posedness for wave-type equations on weak-$L^p$ spaces. Then, we provide a corresponding scattering results in such singular framework. Finally, we use also the dispersive estimates to establish the polynomial stability and improve the decay of scattering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信