关于 2d$ 可积分模型空间

Lukas W. Lindwasser
{"title":"关于 2d$ 可积分模型空间","authors":"Lukas W. Lindwasser","doi":"arxiv-2409.08266","DOIUrl":null,"url":null,"abstract":"We study infinite dimensional Lie algebras, whose infinite dimensional\nmutually commuting subalgebras correspond with the symmetry algebra of $2d$\nintegrable models. These Lie algebras are defined by the set of infinitesimal,\nnonlinear, and higher derivative symmetry transformations present in theories\nwith a left(right)-moving or (anti)-holomorphic current. We study a large class\nof such Lagrangian theories. We classify the commuting subalgebras of the $2d$\nfree massless scalar, and find the symmetries of the known integrable models\nsuch as sine-Gordon, Liouville, Bullough-Dodd, and Korteweg-de Vries. Along the\nway, we find several new sequences of commuting charges, which we conjecture\nare charges of integrable models which are new deformations of a single scalar.\nAfter quantizing, the Lie algebra is deformed, and so are their commuting\nsubalgebras.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the space of $2d$ integrable models\",\"authors\":\"Lukas W. Lindwasser\",\"doi\":\"arxiv-2409.08266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study infinite dimensional Lie algebras, whose infinite dimensional\\nmutually commuting subalgebras correspond with the symmetry algebra of $2d$\\nintegrable models. These Lie algebras are defined by the set of infinitesimal,\\nnonlinear, and higher derivative symmetry transformations present in theories\\nwith a left(right)-moving or (anti)-holomorphic current. We study a large class\\nof such Lagrangian theories. We classify the commuting subalgebras of the $2d$\\nfree massless scalar, and find the symmetries of the known integrable models\\nsuch as sine-Gordon, Liouville, Bullough-Dodd, and Korteweg-de Vries. Along the\\nway, we find several new sequences of commuting charges, which we conjecture\\nare charges of integrable models which are new deformations of a single scalar.\\nAfter quantizing, the Lie algebra is deformed, and so are their commuting\\nsubalgebras.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究无穷维李代数,其无穷维相互换向子代数对应于 2d$integrable 模型的对称代数。这些列阵是由具有左(右)动或(反)全态电流的理论中存在的无穷小、非线性和高导数对称变换集定义的。我们研究了一大类这样的拉格朗日理论。我们对 2d$ 无质量标量的换向子代数进行了分类,并找到了已知可积分模型(如正弦-戈登、柳维尔、布洛夫-多德和科特维格-德弗里斯)的对称性。在此过程中,我们发现了几个新的交换电荷序列,我们猜想它们是可积分模型的电荷,而可积分模型是单个标量的新变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the space of $2d$ integrable models
We study infinite dimensional Lie algebras, whose infinite dimensional mutually commuting subalgebras correspond with the symmetry algebra of $2d$ integrable models. These Lie algebras are defined by the set of infinitesimal, nonlinear, and higher derivative symmetry transformations present in theories with a left(right)-moving or (anti)-holomorphic current. We study a large class of such Lagrangian theories. We classify the commuting subalgebras of the $2d$ free massless scalar, and find the symmetries of the known integrable models such as sine-Gordon, Liouville, Bullough-Dodd, and Korteweg-de Vries. Along the way, we find several new sequences of commuting charges, which we conjecture are charges of integrable models which are new deformations of a single scalar. After quantizing, the Lie algebra is deformed, and so are their commuting subalgebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信