约束玻色-爱因斯坦凝聚态涡旋的相对动力学

Tomoki Ohsawa
{"title":"约束玻色-爱因斯坦凝聚态涡旋的相对动力学","authors":"Tomoki Ohsawa","doi":"arxiv-2409.07657","DOIUrl":null,"url":null,"abstract":"We consider the relative dynamics -- the dynamics modulo rotational symmetry\nin this particular context -- of $N$ vortices in confined Bose--Einstein\nCondensates (BEC) using a finite-dimensional vortex approximation to the\ntwo-dimensional Gross--Pitaevskii equation. We give a Hamiltonian formulation\nof the relative dynamics by showing that it is an instance of the Lie--Poisson\nequation on the dual of a certain Lie algebra. Just as in our accompanying work\non vortex dynamics with the Euclidean symmetry, the relative dynamics possesses\na Casimir invariant and evolves in an invariant set, yielding an\nEnergy--Casimir-type stability condition. We consider three examples of\nrelative equilibria -- those solutions that are undergoing rigid rotations\nabout the origin -- with $N=2, 3, 4$, and investigate their stability using the\nstability condition.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"22 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative Dynamics of Vortices in Confined Bose--Einstein Condensates\",\"authors\":\"Tomoki Ohsawa\",\"doi\":\"arxiv-2409.07657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the relative dynamics -- the dynamics modulo rotational symmetry\\nin this particular context -- of $N$ vortices in confined Bose--Einstein\\nCondensates (BEC) using a finite-dimensional vortex approximation to the\\ntwo-dimensional Gross--Pitaevskii equation. We give a Hamiltonian formulation\\nof the relative dynamics by showing that it is an instance of the Lie--Poisson\\nequation on the dual of a certain Lie algebra. Just as in our accompanying work\\non vortex dynamics with the Euclidean symmetry, the relative dynamics possesses\\na Casimir invariant and evolves in an invariant set, yielding an\\nEnergy--Casimir-type stability condition. We consider three examples of\\nrelative equilibria -- those solutions that are undergoing rigid rotations\\nabout the origin -- with $N=2, 3, 4$, and investigate their stability using the\\nstability condition.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"22 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用二维格罗斯--皮塔耶夫斯基方程的有限维涡旋近似,考虑了约束玻色--爱因斯坦凝结物(BEC)中 $N$ 涡旋的相对动力学--在这种特定情况下的旋转对称模态动力学。我们给出了相对动力学的哈密顿表述,证明它是某个李代数对偶上的李-泊松方程的一个实例。正如我们在欧几里得对称涡旋动力学方面的相关研究一样,相对动力学具有卡西米尔不变量,并在不变量集中演化,从而产生了能量-卡西米尔型稳定性条件。我们考虑了三个相对平衡的例子--那些围绕原点进行刚性旋转的解--N=2, 3, 4$,并利用稳定性条件研究了它们的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative Dynamics of Vortices in Confined Bose--Einstein Condensates
We consider the relative dynamics -- the dynamics modulo rotational symmetry in this particular context -- of $N$ vortices in confined Bose--Einstein Condensates (BEC) using a finite-dimensional vortex approximation to the two-dimensional Gross--Pitaevskii equation. We give a Hamiltonian formulation of the relative dynamics by showing that it is an instance of the Lie--Poisson equation on the dual of a certain Lie algebra. Just as in our accompanying work on vortex dynamics with the Euclidean symmetry, the relative dynamics possesses a Casimir invariant and evolves in an invariant set, yielding an Energy--Casimir-type stability condition. We consider three examples of relative equilibria -- those solutions that are undergoing rigid rotations about the origin -- with $N=2, 3, 4$, and investigate their stability using the stability condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信