$\mathbb{Z}_2^2$级$osp(1|2)$的亲和扩展和维拉索罗代数

N. Aizawa, J. Segar
{"title":"$\\mathbb{Z}_2^2$级$osp(1|2)$的亲和扩展和维拉索罗代数","authors":"N. Aizawa, J. Segar","doi":"arxiv-2409.07938","DOIUrl":null,"url":null,"abstract":"It is known that there are two inequivalent $\\mathbb{Z}_2^2$-graded\n$osp(1|2)$ Lie superalgebras. Their affine extensions are investigated and it\nis shown that one of them admits two central elements, one is non-graded and\nthe other is $(1,1)$-graded. The affine $\\mathbb{Z}_2^2$-$osp(1|2)$ algebras\nare used by the Sugawara construction to study possible $\\mathbb{Z}_2^2$-graded\nextensions of the Virasoro algebra. We obtain a $\\mathbb{Z}_2^2$-graded\nVirasoro algebra with a non-trivially graded central element. Throughout the\ninvestigation, invariant bilinear forms on $\\mathbb{Z}_2^2$-graded\nsuperalgebras play a crucial role, so a theory of invariant bilinear forms is\nalso developed.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affine extensions of $\\\\mathbb{Z}_2^2$-graded $osp(1|2)$ and Virasoro algebra\",\"authors\":\"N. Aizawa, J. Segar\",\"doi\":\"arxiv-2409.07938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that there are two inequivalent $\\\\mathbb{Z}_2^2$-graded\\n$osp(1|2)$ Lie superalgebras. Their affine extensions are investigated and it\\nis shown that one of them admits two central elements, one is non-graded and\\nthe other is $(1,1)$-graded. The affine $\\\\mathbb{Z}_2^2$-$osp(1|2)$ algebras\\nare used by the Sugawara construction to study possible $\\\\mathbb{Z}_2^2$-graded\\nextensions of the Virasoro algebra. We obtain a $\\\\mathbb{Z}_2^2$-graded\\nVirasoro algebra with a non-trivially graded central element. Throughout the\\ninvestigation, invariant bilinear forms on $\\\\mathbb{Z}_2^2$-graded\\nsuperalgebras play a crucial role, so a theory of invariant bilinear forms is\\nalso developed.\",\"PeriodicalId\":501312,\"journal\":{\"name\":\"arXiv - MATH - Mathematical Physics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,有两个不等价的 $\mathbb{Z}_2^2$ 等级$osp(1|2)$ 列超拉。对它们的仿射扩展进行了研究,结果表明,其中一个允许两个中心元,一个是无等级的,另一个是有等级的 $(1,1)$。菅原构造利用仿射 $\mathbb{Z}_2^2$-$osp(1|2)$ 代数来研究维拉索罗代数可能的 $\mathbb{Z}_2^2$ 等级化扩展。我们得到了一个具有非三阶中心元的($\mathbb{Z}_2^2$)分级维拉索罗代数。在整个研究中,$\mathbb{Z}_2^2$-等级上代数上的不变双线性形式起着至关重要的作用,因此也发展了不变双线性形式的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affine extensions of $\mathbb{Z}_2^2$-graded $osp(1|2)$ and Virasoro algebra
It is known that there are two inequivalent $\mathbb{Z}_2^2$-graded $osp(1|2)$ Lie superalgebras. Their affine extensions are investigated and it is shown that one of them admits two central elements, one is non-graded and the other is $(1,1)$-graded. The affine $\mathbb{Z}_2^2$-$osp(1|2)$ algebras are used by the Sugawara construction to study possible $\mathbb{Z}_2^2$-graded extensions of the Virasoro algebra. We obtain a $\mathbb{Z}_2^2$-graded Virasoro algebra with a non-trivially graded central element. Throughout the investigation, invariant bilinear forms on $\mathbb{Z}_2^2$-graded superalgebras play a crucial role, so a theory of invariant bilinear forms is also developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信