Volterra Cox-Ingersoll-Ross 过程的遍历性和大数定律

Mohamed Ben Alaya, Martin Friesen, Jonas Kremer
{"title":"Volterra Cox-Ingersoll-Ross 过程的遍历性和大数定律","authors":"Mohamed Ben Alaya, Martin Friesen, Jonas Kremer","doi":"arxiv-2409.04496","DOIUrl":null,"url":null,"abstract":"We study the Volterra Volterra Cox-Ingersoll-Ross process on $\\mathbb{R}_+$\nand its stationary version. Based on a fine asymptotic analysis of the\ncorresponding Volterra Riccati equation combined with the affine transformation\nformula, we first show that the finite-dimensional distributions of this\nprocess are asymptotically independent. Afterwards, we prove a law-of-large\nnumbers in $L^p$(\\Omega)$ with $p \\geq 2$ and show that the stationary process\nis ergodic. As an application, we prove the consistency of the method of\nmoments and study the maximum-likelihood estimation for continuous and discrete\nhigh-frequency observations.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ergodicity and Law-of-large numbers for the Volterra Cox-Ingersoll-Ross process\",\"authors\":\"Mohamed Ben Alaya, Martin Friesen, Jonas Kremer\",\"doi\":\"arxiv-2409.04496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Volterra Volterra Cox-Ingersoll-Ross process on $\\\\mathbb{R}_+$\\nand its stationary version. Based on a fine asymptotic analysis of the\\ncorresponding Volterra Riccati equation combined with the affine transformation\\nformula, we first show that the finite-dimensional distributions of this\\nprocess are asymptotically independent. Afterwards, we prove a law-of-large\\nnumbers in $L^p$(\\\\Omega)$ with $p \\\\geq 2$ and show that the stationary process\\nis ergodic. As an application, we prove the consistency of the method of\\nmoments and study the maximum-likelihood estimation for continuous and discrete\\nhigh-frequency observations.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 $\mathbb{R}_+$ 上的 Volterra Volterra Cox-Ingersoll-Ross 过程及其静态版本。基于对相应的 Volterra Riccati 方程结合仿射变换公式的精细渐近分析,我们首先证明了该过程的有限维分布是渐近独立的。之后,我们证明了$L^p$(\Omega)$中的大数定律($p \geq 2$),并证明了静止过程是遍历的。作为应用,我们证明了常量法的一致性,并研究了连续和离散高频观测的最大似然估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ergodicity and Law-of-large numbers for the Volterra Cox-Ingersoll-Ross process
We study the Volterra Volterra Cox-Ingersoll-Ross process on $\mathbb{R}_+$ and its stationary version. Based on a fine asymptotic analysis of the corresponding Volterra Riccati equation combined with the affine transformation formula, we first show that the finite-dimensional distributions of this process are asymptotically independent. Afterwards, we prove a law-of-large numbers in $L^p$(\Omega)$ with $p \geq 2$ and show that the stationary process is ergodic. As an application, we prove the consistency of the method of moments and study the maximum-likelihood estimation for continuous and discrete high-frequency observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信