调整无枝晶石榴石固体电解质 Li6.1Ga0.3La3Zr2O12 的晶界结构和化学性质

IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rae-Hyun Lee, Chea-Yun Kang, Jong-Kyu Lee, Bong-Soo Jin, Kyong-Nam Kim, Hyun-Soo Kim, Jung-Rag Yoon, Seung-Hwan Lee
{"title":"调整无枝晶石榴石固体电解质 Li6.1Ga0.3La3Zr2O12 的晶界结构和化学性质","authors":"Rae-Hyun Lee, Chea-Yun Kang, Jong-Kyu Lee, Bong-Soo Jin, Kyong-Nam Kim, Hyun-Soo Kim, Jung-Rag Yoon, Seung-Hwan Lee","doi":"10.1038/s41427-024-00563-7","DOIUrl":null,"url":null,"abstract":"<p>Garnet-type Li<sub>6.1</sub>Ga<sub>0.3</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LGLZO) exhibits high ionic conductivity and extremely low electronic conductivity. The electrochemical properties strongly depend on the characteristics of the grain boundaries and pores in the oxide–ceramic electrolyte. Currently, the main issue of LGLZO is its large grain boundary resistance due to high-temperature sintering. Herein, we propose an effective method for reinforcing the chemical and structural characteristics of the grain boundaries using a Li<sub>2</sub>O-B<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> (LBA) sintering aid. In this study, the LBA sintering aid is critical because it fills grain boundaries and void spaces. As a result, LGLZO solid-state electrolytes with sintering aids significantly enhance the ionic conductivity and reduce the activation energy, especially in the grain boundary region. Another crucial issue is the formation of Li dendrites in LGLZO. Since dendritic Li propagates along the grain boundaries, the optimized LGLZO solid-state electrolyte demonstrates excellent stability against Li metals. Overall, the LGLZO electrolyte with the LBA sintering aid exhibits stable long-term cycling performance due to the well-designed grain boundaries.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"59 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring the grain boundary structure and chemistry of the dendrite-free garnet solid electrolyte Li6.1Ga0.3La3Zr2O12\",\"authors\":\"Rae-Hyun Lee, Chea-Yun Kang, Jong-Kyu Lee, Bong-Soo Jin, Kyong-Nam Kim, Hyun-Soo Kim, Jung-Rag Yoon, Seung-Hwan Lee\",\"doi\":\"10.1038/s41427-024-00563-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Garnet-type Li<sub>6.1</sub>Ga<sub>0.3</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LGLZO) exhibits high ionic conductivity and extremely low electronic conductivity. The electrochemical properties strongly depend on the characteristics of the grain boundaries and pores in the oxide–ceramic electrolyte. Currently, the main issue of LGLZO is its large grain boundary resistance due to high-temperature sintering. Herein, we propose an effective method for reinforcing the chemical and structural characteristics of the grain boundaries using a Li<sub>2</sub>O-B<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> (LBA) sintering aid. In this study, the LBA sintering aid is critical because it fills grain boundaries and void spaces. As a result, LGLZO solid-state electrolytes with sintering aids significantly enhance the ionic conductivity and reduce the activation energy, especially in the grain boundary region. Another crucial issue is the formation of Li dendrites in LGLZO. Since dendritic Li propagates along the grain boundaries, the optimized LGLZO solid-state electrolyte demonstrates excellent stability against Li metals. Overall, the LGLZO electrolyte with the LBA sintering aid exhibits stable long-term cycling performance due to the well-designed grain boundaries.</p>\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41427-024-00563-7\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41427-024-00563-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

石榴石型 Li6.1Ga0.3La3Zr2O12(LGLZO)具有很高的离子电导率和极低的电子电导率。其电化学性质在很大程度上取决于氧化物-陶瓷电解质中晶界和孔隙的特性。目前,LGLZO 的主要问题是高温烧结造成的较大晶界电阻。在此,我们提出了一种利用 Li2O-B2O3-Al2O3 (LBA) 烧结助剂强化晶界化学和结构特性的有效方法。在本研究中,LBA 烧结助剂至关重要,因为它能填充晶界和空隙。因此,含有烧结助剂的 LGLZO 固态电解质可显著提高离子导电性并降低活化能,尤其是在晶界区域。另一个关键问题是锂枝晶在 LGLZO 中的形成。由于树枝状锂沿着晶界传播,因此优化的 LGLZO 固态电解质对锂金属具有极佳的稳定性。总体而言,采用 LBA 烧结辅助剂的 LGLZO 电解液因其精心设计的晶界而表现出稳定的长期循环性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring the grain boundary structure and chemistry of the dendrite-free garnet solid electrolyte Li6.1Ga0.3La3Zr2O12

Tailoring the grain boundary structure and chemistry of the dendrite-free garnet solid electrolyte Li6.1Ga0.3La3Zr2O12

Garnet-type Li6.1Ga0.3La3Zr2O12 (LGLZO) exhibits high ionic conductivity and extremely low electronic conductivity. The electrochemical properties strongly depend on the characteristics of the grain boundaries and pores in the oxide–ceramic electrolyte. Currently, the main issue of LGLZO is its large grain boundary resistance due to high-temperature sintering. Herein, we propose an effective method for reinforcing the chemical and structural characteristics of the grain boundaries using a Li2O-B2O3-Al2O3 (LBA) sintering aid. In this study, the LBA sintering aid is critical because it fills grain boundaries and void spaces. As a result, LGLZO solid-state electrolytes with sintering aids significantly enhance the ionic conductivity and reduce the activation energy, especially in the grain boundary region. Another crucial issue is the formation of Li dendrites in LGLZO. Since dendritic Li propagates along the grain boundaries, the optimized LGLZO solid-state electrolyte demonstrates excellent stability against Li metals. Overall, the LGLZO electrolyte with the LBA sintering aid exhibits stable long-term cycling performance due to the well-designed grain boundaries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Npg Asia Materials
Npg Asia Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
15.40
自引率
1.00%
发文量
87
审稿时长
2 months
期刊介绍: NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信