Ju Zhang, Lieli Ye, Weiwei Gong, Mingyang Chen, Guangyu Liu, Yun Cheng
{"title":"基于双分支结构和多尺度残留注意力的低剂量 CT 去噪新型网络","authors":"Ju Zhang, Lieli Ye, Weiwei Gong, Mingyang Chen, Guangyu Liu, Yun Cheng","doi":"10.1007/s10278-024-01254-z","DOIUrl":null,"url":null,"abstract":"<p>Deep learning-based denoising of low-dose medical CT images has received great attention both from academic researchers and physicians in recent years, and has shown important application value in clinical practice. In this work, a novel two-branch and multi-scale residual attention-based network for low-dose CT image denoising is proposed. It adopts a two-branch framework structure, to extract and fuse image features at shallow and deep levels respectively, to recover image texture and structure information as much as possible. We propose the adaptive dynamic convolution block (ADCB) in the local information extraction layer. It can effectively extract the detailed information of low-dose CT denoising and enables the network to better capture the local details and texture features of the image, thereby improving the denoising effect and image quality. Multi-scale edge enhancement attention block (MEAB) is proposed in the global information extraction layer, to perform feature fusion through dilated convolution and a multi-dimensional attention mechanism. A multi-scale residual convolution block (MRCB) is proposed to integrate feature information and improve the robustness and generalization of the network. To demonstrate the effectiveness of our method, extensive comparison experiments are conducted and the performances evaluated on two publicly available datasets. Our model achieves 29.3004 PSNR, 0.8659 SSIM, and 14.0284 RMSE on the AAPM-Mayo dataset. It is evaluated by adding four different noise levels σ = 15, 30, 45, and 60 on the Qin_LUNG_CT dataset and achieves the best results. Ablation studies show that the proposed ADCB, MEAB, and MRCB modules improve the denoising performances significantly. The source code is available at https://github.com/Ye111-cmd/LDMANet.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"2 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Network for Low-Dose CT Denoising Based on Dual-Branch Structure and Multi-Scale Residual Attention\",\"authors\":\"Ju Zhang, Lieli Ye, Weiwei Gong, Mingyang Chen, Guangyu Liu, Yun Cheng\",\"doi\":\"10.1007/s10278-024-01254-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep learning-based denoising of low-dose medical CT images has received great attention both from academic researchers and physicians in recent years, and has shown important application value in clinical practice. In this work, a novel two-branch and multi-scale residual attention-based network for low-dose CT image denoising is proposed. It adopts a two-branch framework structure, to extract and fuse image features at shallow and deep levels respectively, to recover image texture and structure information as much as possible. We propose the adaptive dynamic convolution block (ADCB) in the local information extraction layer. It can effectively extract the detailed information of low-dose CT denoising and enables the network to better capture the local details and texture features of the image, thereby improving the denoising effect and image quality. Multi-scale edge enhancement attention block (MEAB) is proposed in the global information extraction layer, to perform feature fusion through dilated convolution and a multi-dimensional attention mechanism. A multi-scale residual convolution block (MRCB) is proposed to integrate feature information and improve the robustness and generalization of the network. To demonstrate the effectiveness of our method, extensive comparison experiments are conducted and the performances evaluated on two publicly available datasets. Our model achieves 29.3004 PSNR, 0.8659 SSIM, and 14.0284 RMSE on the AAPM-Mayo dataset. It is evaluated by adding four different noise levels σ = 15, 30, 45, and 60 on the Qin_LUNG_CT dataset and achieves the best results. Ablation studies show that the proposed ADCB, MEAB, and MRCB modules improve the denoising performances significantly. The source code is available at https://github.com/Ye111-cmd/LDMANet.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-024-01254-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-01254-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A Novel Network for Low-Dose CT Denoising Based on Dual-Branch Structure and Multi-Scale Residual Attention
Deep learning-based denoising of low-dose medical CT images has received great attention both from academic researchers and physicians in recent years, and has shown important application value in clinical practice. In this work, a novel two-branch and multi-scale residual attention-based network for low-dose CT image denoising is proposed. It adopts a two-branch framework structure, to extract and fuse image features at shallow and deep levels respectively, to recover image texture and structure information as much as possible. We propose the adaptive dynamic convolution block (ADCB) in the local information extraction layer. It can effectively extract the detailed information of low-dose CT denoising and enables the network to better capture the local details and texture features of the image, thereby improving the denoising effect and image quality. Multi-scale edge enhancement attention block (MEAB) is proposed in the global information extraction layer, to perform feature fusion through dilated convolution and a multi-dimensional attention mechanism. A multi-scale residual convolution block (MRCB) is proposed to integrate feature information and improve the robustness and generalization of the network. To demonstrate the effectiveness of our method, extensive comparison experiments are conducted and the performances evaluated on two publicly available datasets. Our model achieves 29.3004 PSNR, 0.8659 SSIM, and 14.0284 RMSE on the AAPM-Mayo dataset. It is evaluated by adding four different noise levels σ = 15, 30, 45, and 60 on the Qin_LUNG_CT dataset and achieves the best results. Ablation studies show that the proposed ADCB, MEAB, and MRCB modules improve the denoising performances significantly. The source code is available at https://github.com/Ye111-cmd/LDMANet.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.