生成分子的开源分子处理管道

Shreyas V, Jose Siguenza, Karan Bania, Bharath Ramsundar
{"title":"生成分子的开源分子处理管道","authors":"Shreyas V, Jose Siguenza, Karan Bania, Bharath Ramsundar","doi":"arxiv-2408.06261","DOIUrl":null,"url":null,"abstract":"Generative models for molecules have shown considerable promise for use in\ncomputational chemistry, but remain difficult to use for non-experts. For this\nreason, we introduce open-source infrastructure for easily building generative\nmolecular models into the widely used DeepChem [Ramsundar et al., 2019] library\nwith the aim of creating a robust and reusable molecular generation pipeline.\nIn particular, we add high quality PyTorch [Paszke et al., 2019]\nimplementations of the Molecular Generative Adversarial Networks (MolGAN) [Cao\nand Kipf, 2022] and Normalizing Flows [Papamakarios et al., 2021]. Our\nimplementations show strong performance comparable with past work [Kuznetsov\nand Polykovskiy, 2021, Cao and Kipf, 2022].","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open-Source Molecular Processing Pipeline for Generating Molecules\",\"authors\":\"Shreyas V, Jose Siguenza, Karan Bania, Bharath Ramsundar\",\"doi\":\"arxiv-2408.06261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative models for molecules have shown considerable promise for use in\\ncomputational chemistry, but remain difficult to use for non-experts. For this\\nreason, we introduce open-source infrastructure for easily building generative\\nmolecular models into the widely used DeepChem [Ramsundar et al., 2019] library\\nwith the aim of creating a robust and reusable molecular generation pipeline.\\nIn particular, we add high quality PyTorch [Paszke et al., 2019]\\nimplementations of the Molecular Generative Adversarial Networks (MolGAN) [Cao\\nand Kipf, 2022] and Normalizing Flows [Papamakarios et al., 2021]. Our\\nimplementations show strong performance comparable with past work [Kuznetsov\\nand Polykovskiy, 2021, Cao and Kipf, 2022].\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子生成模型在非计算化学中的应用前景广阔,但对于非专业人员来说仍然难以使用。为此,我们在广泛使用的 DeepChem [Ramsundar et al., 2019] 库中引入了开源基础架构,用于轻松构建分子生成模型,目的是创建一个强大且可重复使用的分子生成管道。特别是,我们添加了分子生成对抗网络(MolGAN)[Caoand Kipf, 2022] 和归一化流[Papamakarios et al., 2021]的高质量 PyTorch [Paszke et al., 2019]实现。我们的实现显示出与过去的工作相媲美的强大性能[Kuznetsovand Polykovskiy, 2021, Cao and Kipf, 2022]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Open-Source Molecular Processing Pipeline for Generating Molecules
Generative models for molecules have shown considerable promise for use in computational chemistry, but remain difficult to use for non-experts. For this reason, we introduce open-source infrastructure for easily building generative molecular models into the widely used DeepChem [Ramsundar et al., 2019] library with the aim of creating a robust and reusable molecular generation pipeline. In particular, we add high quality PyTorch [Paszke et al., 2019] implementations of the Molecular Generative Adversarial Networks (MolGAN) [Cao and Kipf, 2022] and Normalizing Flows [Papamakarios et al., 2021]. Our implementations show strong performance comparable with past work [Kuznetsov and Polykovskiy, 2021, Cao and Kipf, 2022].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信