Shreyas V, Jose Siguenza, Karan Bania, Bharath Ramsundar
{"title":"生成分子的开源分子处理管道","authors":"Shreyas V, Jose Siguenza, Karan Bania, Bharath Ramsundar","doi":"arxiv-2408.06261","DOIUrl":null,"url":null,"abstract":"Generative models for molecules have shown considerable promise for use in\ncomputational chemistry, but remain difficult to use for non-experts. For this\nreason, we introduce open-source infrastructure for easily building generative\nmolecular models into the widely used DeepChem [Ramsundar et al., 2019] library\nwith the aim of creating a robust and reusable molecular generation pipeline.\nIn particular, we add high quality PyTorch [Paszke et al., 2019]\nimplementations of the Molecular Generative Adversarial Networks (MolGAN) [Cao\nand Kipf, 2022] and Normalizing Flows [Papamakarios et al., 2021]. Our\nimplementations show strong performance comparable with past work [Kuznetsov\nand Polykovskiy, 2021, Cao and Kipf, 2022].","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open-Source Molecular Processing Pipeline for Generating Molecules\",\"authors\":\"Shreyas V, Jose Siguenza, Karan Bania, Bharath Ramsundar\",\"doi\":\"arxiv-2408.06261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative models for molecules have shown considerable promise for use in\\ncomputational chemistry, but remain difficult to use for non-experts. For this\\nreason, we introduce open-source infrastructure for easily building generative\\nmolecular models into the widely used DeepChem [Ramsundar et al., 2019] library\\nwith the aim of creating a robust and reusable molecular generation pipeline.\\nIn particular, we add high quality PyTorch [Paszke et al., 2019]\\nimplementations of the Molecular Generative Adversarial Networks (MolGAN) [Cao\\nand Kipf, 2022] and Normalizing Flows [Papamakarios et al., 2021]. Our\\nimplementations show strong performance comparable with past work [Kuznetsov\\nand Polykovskiy, 2021, Cao and Kipf, 2022].\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
分子生成模型在非计算化学中的应用前景广阔,但对于非专业人员来说仍然难以使用。为此,我们在广泛使用的 DeepChem [Ramsundar et al., 2019] 库中引入了开源基础架构,用于轻松构建分子生成模型,目的是创建一个强大且可重复使用的分子生成管道。特别是,我们添加了分子生成对抗网络(MolGAN)[Caoand Kipf, 2022] 和归一化流[Papamakarios et al., 2021]的高质量 PyTorch [Paszke et al., 2019]实现。我们的实现显示出与过去的工作相媲美的强大性能[Kuznetsovand Polykovskiy, 2021, Cao and Kipf, 2022]。
Open-Source Molecular Processing Pipeline for Generating Molecules
Generative models for molecules have shown considerable promise for use in
computational chemistry, but remain difficult to use for non-experts. For this
reason, we introduce open-source infrastructure for easily building generative
molecular models into the widely used DeepChem [Ramsundar et al., 2019] library
with the aim of creating a robust and reusable molecular generation pipeline.
In particular, we add high quality PyTorch [Paszke et al., 2019]
implementations of the Molecular Generative Adversarial Networks (MolGAN) [Cao
and Kipf, 2022] and Normalizing Flows [Papamakarios et al., 2021]. Our
implementations show strong performance comparable with past work [Kuznetsov
and Polykovskiy, 2021, Cao and Kipf, 2022].